▶ Exercice 1

Dans chaque cas, calculer f'(x) sur l'intervalle I.

- 1. $f(x) = \ln(3x^2 5x + 7), I = \mathbb{R}$
- 2. $f(x) = \ln(9-3x), I =]-\infty;3[$
- 3. $f(x) = \ln((x+1)(5-x)), I =]-1;5[$

► Exercice 2

Le but de l'exercice est de montrer que l'équation (E) : $e^x = \frac{1}{x}$, admet une unique solution dans l'ensemble \mathbb{R} des nombres réels.

I. Existence et unicité de la solution

On note f la fonction définie sur \mathbb{R} par : $f(x) = x - e^{-x}$.

- 1. Démonter que x est solution de l'équation (E) si et seulement si f(x) = 0.
- 2. étude du signe de la fonction f
 - (a) étudier le sens de variations de la fonction f sur \mathbb{R} .
 - (b) En déduire que l'équation (E) possède une unique solution sur \mathbb{R} , notée α .
 - (c) Démontrer que α appartient à l'intervalle $\left[\frac{1}{2} \; ; \; 1\right]$.
 - (d) étudier le signe de f sur l'intervalle $[0; \alpha]$.

II. Deuxième approche

On note g la fonction définie sur l'intervalle [0; 1] par $g(x) = \frac{1+x}{1+e^x}$.

- 1. Démontrer que l'équation f(x) = 0 est équivalente à l'équation g(x) = x.
- 2. En déduire que α est l'unique réel vérifiant : $g(\alpha) = \alpha$.
- 3. Calculer g'(x) et en déduire que la fonction g est croissante sur l'intervalle $[0; \alpha]$.

► Exercice 3

On considère la fonction f définie sur $]0;+\infty[$ par :

$$f(x) = (\ln x)^3 - 3\ln x.$$

On note $\operatorname{\mathscr{C}}$ sa courbe représentative dans un repère orthonormé.

- 1. (a) étudier la limite de f en $+\infty$.
 - (b) Montrer que $\mathscr C$ admet une asymptote verticale.
- 2. Montrer que pour tout x > 0,

$$f'(x) = \frac{3(\ln x - 1)(\ln x + 1)}{x}.$$

- 3. Dresser le tableau des variations de f.
- 4. Résoudre l'équation f(x) = 0.
- 5. Construire \mathscr{C} et son asymptote.