Prénom: Nom: Série technologique

Calculatrices autorisées

► Exercice 1 /3

1. (a) Déterminer l'ensemble des réels x tels que $\ln(6x-2)$ est défini.

- (b) Déterminer l'ensemble des réels x tels que ln(2x-1) est défini.
- (c) Déterminer l'ensemble des réels x tels que ln(x) est défini.
- 2. Résoudre l'équation suivante :

$$ln(6x-2) + ln(2x-1) = ln x$$

► Exercice 2 /7,5

- 1. Soit g la fonction définie sur]0; $+\infty$ [par $g(x) = x^2 + \ln(x)$.
 - (a) Démontrer que pour tout $x \in]0; +\infty[, g'(x) = \frac{2x^2 + 1}{x}]$.
 - (b) Étudier le signe de g(x) pour $x \in]0; +\infty[$.
 - (c) Dresser le tableau de variations de la fonction g.
 - (d) Déterminer les limites de g(x) en $-\infty$ et $+\infty$.
 - (e) Montrer que g(x) = 0 admet une solution unique α sur $]0; +\infty[$ puis déterminer un encadrement de α d'amplitude 10^{-2} .
 - (f) Déduire de ce qui précède le signe de g(x) sur $]0; +\infty[$.
- 2. On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = x^2 + (\ln(x))^2$.
 - (a) Démontrer que pour tout réel $x \in [0; +\infty[$, on a

$$f'(x) = \frac{2g(x)}{x}$$

- (b) Dresser le tableau de variations de f sur $]0; +\infty[$.
- (c) En déduire que f admet un minimum en $x = \alpha$.

► Exercice 3

On considère la suite (u_n) définie par $u_0=1$ et pour tout $n \in \mathbb{N}$, $u_{n+1}=\frac{1}{2}u_n+1$.

- 1. Justifier que $u_1 = \frac{3}{2}$
- 2. Calculer u_2 et u_3 . Donner les valeurs exactes puis comparer les valeurs u_0 , u_1 , u_2 et u_3 .
- 3. (a) Démontrer par récurrence que pour tout $n \in \mathbb{N}$,

$$u_n \leq 2$$

- (b) Comment peut-on interpréter ce résultat pour la suite (u_n) ?
- 4. (a) Démontrer par récurrence que pour tout $n \in \mathbb{N}$,

$$u_n \leqslant u_{n+1}$$

(b) Comment peut-on interpréter ce résultat pour la suite (u_n) ?

► Exercice 4 /4

Soit f la fonction définie sur \mathbb{R} par $f(x) = 4\sin\left(\frac{x}{2}\right)$ et \mathscr{C} sa courbe représentative dans un repère orthonormal $\left(O; \vec{i}; \vec{j}\right)$.

- 1. Démontrer que f est impaire.
- 2. Démontrer que f est 4π -périodique.
- 3. Calculer la dérivée f' de f sur \mathbb{R} et étudier le signe de f'(x) sur l'intervalle $[0; 2\pi]$.