Chapitre 6 : Fonctions usuelles

1 Fonction exponentielle

1.1 Définition de « La fonction exponentielle »

Définition 1 (Fonction exponentielle).

La fonction *exponentielle*, notée exp est l'unique fonction dérivable sur \mathbb{R} égale à sa dérivée et telle que $\exp(0) = 1$.

Remarque 1 (Unicité de la fonction).

On doit admettre d'existence d'une telle fonction (une justification est sa constructibilité grâce à la méthode d'Euler), mais on peut démontrer qu'elle est unique, en utilisant le fait que la fonction \exp ne s'annule pas sur \mathbb{R} .

 \exp ne s'annule pas sur $\mathbb R$

Unicité de la fonction

Théorème 1 (Propriétés de la fonction).

- Relation fonctionnelle : $\forall x, y \in \mathbb{R}$, $\exp(x + y) = \exp(x) \times \exp(y)$
- Positivité : $\forall x \in \mathbb{R}, \exp(x) > 0$.
- Monotonie : la fonction exp est strictement croissante sur ℝ.
- Notation d'Euler : On pose $\exp(x) = e^x$, où $e = \exp(1) \approx 2,71828...$

$$\forall a,b \in \mathbb{R} \ : \ \mathrm{e}^{a+b} = \mathrm{e}^a \times \mathrm{e}^b \ ; \ \mathrm{e}^{-a} = \frac{1}{\mathrm{e}^a} \ ; \ \mathrm{e}^{a-b} = \frac{\mathrm{e}^a}{\mathrm{e}^b} \ ; \ e^{na} = \left(\mathrm{e}^a\right)^n, \ n \in \mathbb{Z}$$

Démonstration

Relation fonctionnelle: Soit y un réel quelconque. Posons, pour tout $x \in \mathbb{R}$, $f(x) = \frac{\exp(x+y)}{\exp(x)}$ (bien définie et dérivable sur \mathbb{R} car pour tout $x \in \mathbb{R}$, $\exp(x) > 0$)

 $\exp(x) > 0$)
Pour tout $x \in \mathbb{R}$, $f'(x) = \frac{\exp(x) \times 1 \exp(x + y) - \exp(x) \exp(x + y)}{\exp(x)^2} = 0$. Ainsi, f est constante sur \mathbb{R} et on a, pour tout $x \in \mathbb{R}$, $f(x) = f(0) = \exp(y)$. Ainsi, $\exp(x + y) = \exp(x) \times \exp(y)$.

Remarque 2 (valeur de e).

Il peut être défini comme la limite de la suite (u_n) telle que $u_n = \left(1 + \frac{1}{n}\right)^n$, c'est la définition historique.

Mais la convergence de la suite est très lente (il faut calculer plusieurs milliers de termes de la suite pour obtenir quelques décimales exactes.

On a une valeur approchée plus rapidement en étudiant la suite (v_n) définie par $v_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{3!}$

... + $\frac{1}{n!^a}$, qui converge également vers le nombre e.

a. la factorielle de *n* est le nombre défini ainsi : $n! = 1 \times 2 \times 3 \times ... \times n$.

■ Exemple 1:

•
$$e^2 \times e = e^{2+1} = e^3$$

$$\bullet \ e^{-4} = \frac{1}{e^4}$$

$$(e^x)^2 = e^{2x}$$

$$\bullet \ \frac{e^{3x+1}}{e^{1-x}} = e^{3x+1-(1-x)} = e^{4x}$$

Théorème 2 (Équations et inéquations).

- $\forall a, b \in \mathbb{R}$, on a $e^a = e^b \iff a = b$.
- $\forall a, b \in \mathbb{R}$, on a $e^a > e^b \iff a > b$.

▶ Exercice 1

Résoudre dans \mathbb{R} :

$$e^{2x^2+3} = e^{7x}$$
 $e^{3x} \le e^{x+6}$

1.2 Limites

Propriété 1 (Limites de la fonction exponentielle).

 $\bullet \lim_{x \to +\infty} e^x = \dots$

 $\bullet \lim_{x \to -\infty} e^x = \dots$

Démonstration

- 1. Étudier les variations de la fonction f définie sur \mathbb{R}_+ par $f(x) = e^x -$
- 2. En déduire que $\lim_{x \to +\infty} e^x = +\infty$ 3. Quelle est la limite en $-\infty$: $\lim_{x \to -\infty} e^x$?

► Exercice 2 Modèle de Verhulst

Une population de bactéries se modélise au cours du temps par la fonction définie sur \mathbb{R}_+ par $f(t) = \frac{150}{1 + 90e^{-0.6t}}$. Déterminer la limite de f en $+\infty$.

Propriété 2 (Limite et nombre dérivé).

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

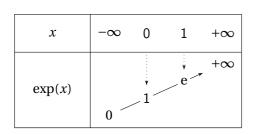
On interprète cela par l'approximation affine de exp : quand x est proche de 0, $e^x \approx 1 + x$.

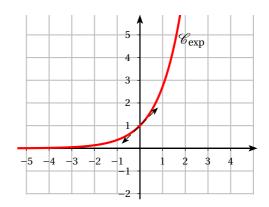
Démonstration

Nombre dérivé en 0

1.3 Représentation graphique

La fonction exponentielle croît très vite. $e^1 \approx 2,72,\ e^2 \approx 7,39$ et $e^4 \approx 54$





1.4 Théorème de croissances comparées

« L'exponentielle domine les fonctions puissance »

Théorème 3 (Croissances comparées).

$$\lim_{x \to +\infty} \frac{\exp(x)}{x} = +\infty \text{ et par conséquent, } \lim_{x \to -\infty} x \exp(x) = 0$$

Démonstration

On étudie la fonction f définie sur $[0; +\infty[$ par $f(x) = e^x - \frac{x^2}{2}.$

Remarque 3.

Les formules précédentes restent vraies si on remplace $\frac{\exp x}{x}$ par $\frac{\exp x}{x^n}$ et en 0 par $x^n \exp(x)$.

▶ Exercice 3

Déterminer les limites en $-\infty$ et $+\infty$ de f définie sur \mathbb{R} par $f(x) = e^{-3x} + 3x - 5$.

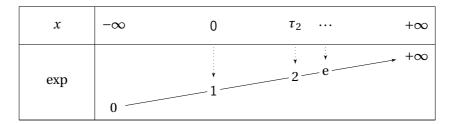
2 Fonction logarithme népérien

2.1 Définition

d'après le corollaire du théorème des valeurs intermédiaires, pour tout nombre strictement positif, il existe un unique antécédent réel par la fonction exponentielle : pour tout $y \in]0; +\infty[$, il existe un unique $x \in \mathbb{R}$ tel que $\exp(x) = y$.

On remarque d'ailleurs que $y > 1 \iff x > 0$.

Par exemple, 2 > 0 admet un antécédent τ_2 qui sera positif et tel que $\exp(\tau_2) = 2$.



Définition 2 (Logarithme népérien).

Si y est un nombre strictement positif, on appelle *logarithme népérien* de y le nombre réel noté $\ln(y)$ qui est l'antécédent de y par la fonction exponentielle :

$$\ln : y \in \mathbb{R}^*_+ \longrightarrow \ln(y) \in \mathbb{R}$$
 tel que $\exp(\ln(y)) = y$

On dit que la fonction logarithme népérien est la fonction réciproque de la fonction exponentielle.

$$\forall a \in \mathbb{R}, \forall b > 0, e^{a} = b \iff a = \ln(b)$$

$$\begin{array}{c} 6 \\ 5 \\ 5 \\ y = \exp(x) \\ 4 \end{array}$$

$$\begin{array}{c} A(x; y) \\ 3 \\ 3 \\ 4 \end{array}$$

$$\begin{array}{c} A(x; y) \\ 4 \\ 3 \end{array}$$

$$\begin{array}{c} A(x; y) \\ 4 \\ 3 \end{array}$$

Comme $y = \exp(x)$, alors $x = \ln(y)$, les courbes sont symétriques par rapport à l'axe d'équation y = x (qui permet d'intervertir les rôles des axes des abscisses et des ordonnées).

On a les propriétés suivantes :

Propriété 3 (fonction réciproque de exp).

- Pour tout $x \in \mathbb{R}$, $\ln(\exp(x)) = x$, ou $\ln(e^x) = x$
- Pour tout $x \in]0$; $+\infty[=\mathbb{R}_+^*, \exp(\ln(x)) = x, \text{ ou } e^{\ln(x)} = x$

En particulier,

 $ln(1) = ln(e^0) = 0$ et $ln(e) = ln(e^1) = 1$.

Théorème 4 (Propriétés de ln).

 $\forall a, b \in]0; +\infty[$

- Conséquences :

$$1. \ln\left(\frac{1}{b}\right) = -\ln(b)$$

2.
$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

- 3. Pour tout entier relatif n, $\ln(a^n) = n\ln(a)$
- 4. $\ln(\sqrt{a}) = \frac{1}{2}\ln(a)$ et plus généralement, pour tout réel b, $\ln(a^b) = b\ln(a)$.

On retiendra du dernier point que toute puissance s'exprime à l'aide de l'exponentielle de base e et du logarithme népérien :

$$x^{y} = (e^{\ln x})^{y} = e^{y \ln(x)}$$

■ Exemple 2:

- ln(10) = ln(2) + ln(5)
- ln(100) = ln(10) + ln(10) = 2ln(10)
- ln(1000) = ... = 3 ln(10)

► Exercice 4 Prise d'initiatives

- 1. Comparer les nombres $a = 2^{2015}$ et $b = 3^{1271}$
- 2. Donner une valeur approchée du nombre $A = \frac{2^{2015}}{5^{867}}$

2.2 Dérivée et variations

Propriété 4 (Dérivée de la fonction ln).

Sur l'intervalle $]0; +\infty[$, la fonction \ln est dérivable et sa dérivée est la fonction inverse : pour tout x > 0, $\ln'(x) = \frac{1}{x}$

Remarque 4.

La fonction \ln est par conséquent continue sur $]0; +\infty[$.

Conséquence 1.

La fonction \ln est strictement croissante sur $]0; +\infty[$

Propriété 5 (Équations et inéquations).

- Pour tous a, b > 0, $\ln(a) = \ln(b) \iff a = b$
- Pour tous a, b > 0, $\ln(a) < \ln(b) \iff a < b$

▶ Exercice 5

Résoudre les inéquations suivantes après avoir trouvé leur ensemble de définition.

1.
$$ln(2x-4) < 0$$

3.
$$\ln(-x+1) \ge \ln(x)$$

2.
$$ln(3x) \leq 1$$

4.
$$\ln(3-2x) < \ln(x-3)$$

2.3 Limites, Croissances comparées, équivalent

Propriété 6 (Limites).

$$\lim_{\substack{x \to 0 \\ x \to 0}} \ln(x) = -\infty \text{ et } \lim_{\substack{x \to +\infty}} \ln(x) = +\infty.$$

Propriété 7 (Croissances comparées).

• Forme
$$\frac{+\infty}{+\infty}$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

• Forme $0 \times -\infty$,

$$\lim_{x \to 0} x \ln(x) = 0$$

► Exercice 6

Soit f la fonction définie sur $]0; +\infty[$ par :

$$f(x) = \frac{\ln x}{2x+1}$$

- 1. Déterminer les limites aux bornes de l'ensemble de définition.
- 2. Interpréter graphiquement les résultats obtenus.

Propriété 8 (Une limite particulière).

On a
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Démonstration

Le nombre dérivé de ln en 1 donne la limite attendue.

Remarque 5 (Équivalent).

On dit que la fonction $x \mapsto \ln(1+x)$ est équivalente à x en 0.

Cela signifie que, pour un x « proche de 0, $ln(1+x) \approx x$ ».

Par exemple, $ln(1,01) \approx 0,009950331 \approx 0,01$

2.4 Étude des fonctions composées $\ln \circ u$

Propriété 9 (Dérivée de $\ln \circ u$).

Si u est une fonction définie sur un intervalle I, dérivable sur I et est strictement positive sur I, alors la fonction $f = \ln \circ u$ est dérivable sur I et

$$\forall x \in I \quad f'(x) = \frac{u'(x)}{u(x)}$$

Conséquence 2.

- u et ln(u) ont le même sens de variation sur I.
- (avec une fonction affine) $f: x \mapsto \ln(ax+b)$ est dérivable sur $I = \{x \in \mathbb{R} \mid ax+b > 0\}$ et pour tout $x \in I$, $f'(x) = \frac{a}{ax+b}$.

Cette dernière remarque sera utilisée notamment pour la recherche de primitives de fractions rationnelles.

3 Fonctions trigonométriques

3.1 Fonction sinus

Définition 3 (Sinus d'un réel).

Soit x un nombre réel, $\sin x$ est l'ordonnée du point du cercle trigonométrique associé au nombre x.

Définition 4 (Fonction sinus).

La fonction sinus est définie sur \mathbb{R} , par

$$\sin: x \mapsto \sin x$$

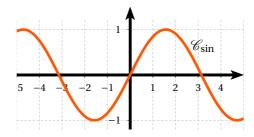
Elle est 2π -périodique, impaire, continue et dérivable sur \mathbb{R} .

Sa dérivée est $\sin' = \cos$

Propriété 10 (Variations).

х	0	$\pi/2$	π
$\sin(x)$	0	1	~ ₀

Imparité et périodicité font le reste :



3.2 Fonction cosinus

Définition 5 (Cosinus d'un réel).

Soit x un nombre réel, $\cos x$ est l'abscisse du point du cercle trigonométrique associé au nombre x.

Définition 6 (Fonction sinus).

La fonction *cosinus* est définie sur ℝ, par

$$\cos: x \mapsto \cos x$$

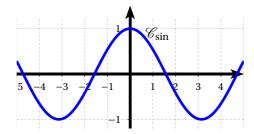
Elle est 2π -périodique, paire, continue et dérivable sur \mathbb{R} .

Sa dérivée est $\cos' = -\sin x$

Propriété 11 (Variations).

x	0	$\pi/2$	π
$\cos(x)$	1	0	1
			-1

Parité et périodicité font le reste :



3.3 Fonction Tangente

Définition 7 (tangente d'un réel)

Soit x un nombre réel différent de $\frac{\pi}{2}$ modulo π , $\tan x = \frac{\sin x}{\cos x}$.

Définition 8 (Fonction tangente).

La fonction tangente est définie sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\mid k\in\mathbb{Z}\right\}$, par

$$\cos: x \mapsto \cos x$$

Elle est π -périodique, impaire, continue et dérivable sur $\mathbb{R}\setminus \left\{\frac{\pi}{2}+k\pi\mid k\in\mathbb{Z}\right\}$.

Sa dérivée est $\tan': x \mapsto 1 + \tan^2 x = \frac{1}{\cos^2 x}$

Propriété 12 (Variations sur $\left[0; \frac{\pi}{2}\right]$).

La fonction tangente est strictement croissante sur $\left[0; \frac{\pi}{2}\right]$

x	0	$\pi/2$
tan(x)	0	+∞

Imparité et périodicité font le reste :

