Chapitre 1 : Second degré

Table des matières

1	Étude des fonctions polynômes du second degré	1			
	1.1 Fonction polynôme de degré 2	1			
	1.2 Forme canonique	2			
	1.3 Variations	2			
	1.4 Courbe représentative	2			
2 Équations du second degré					
	2.1 Racines d'un trinôme	3			
	2.2 Méthode de résolution systématique	5			
3	Signe du trinôme	6			
4	Tableau récapitulatif	7			

1 Étude des fonctions polynômes du second degré

1.1 Fonction polynôme de degré 2

 $\textbf{D\'efinition 1} \ (\textbf{Fonction polyn\^ome du second degr\'e}).$

Une fonction polynôme du second degré (fpsd) aussi appelée trinôme du second degré est une fonction définie sur \mathbb{R} telle que, pour tout $x \in \mathbb{R}$, $f(x) = ax^2 + bx + c$, $a, b, c \in \mathbb{R}$ et $a \neq 0$.

■ Exemple 1:

Si f est la fonction définie sur \mathbb{R} par $f(x) = 3x^2 - 4x + 1$, alors f est une fpsd avec a = 3, b = -4 et c = 1.

▶ Exercice 1

Pour chacune des fonctions suivantes, dire si elle est une fonction polynôme du second degré et , le cas échéant, donner les valeurs de a, b et c.

- 1. $f(x) = 2x^2 + 1$
- 2. $g(x) = x^3 + 2x^2$
- 3. h(x) = (x-1)(3x+2)
- 4. $i(x) = (x+1)^2 x^2$

1.2 Forme canonique

Propriété 1 (Existence et unicité de la forme canonique).

Pour **toute** fpsd de la forme $f(x) = ax^2 + bx + c$, il existe des réels α et β tels que, pour tout $x \in \mathbb{R}$, $f(x) = a(x - \alpha)^2 + \beta$.

Cette dernière écriture est appelée forme canonique de la fpsd.

■ Exemple 2:

Soit f définie sur \mathbb{R} par $f(x) = 3x^2 + 12x + 1 = \dots$

Démonstration

Soit f une fpsd définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, avec $a \neq 0$.

Vous pouvez trouver la vidéo de la démonstration ICI.

1.3 Variations

Propriété 2 (Variations des fpsd).

Soit f une fpsd définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$. Les variations de f sont données par :

Si
$$a > 0$$

x	$-\infty$	 +∞
f(x)		

$$f$$
 admet un en $x = \alpha = \frac{b}{2a}$

<u>Si *a* < 0</u> *x* −∞

f(x)

f admet un en $x = \alpha = -\frac{b}{2a}$

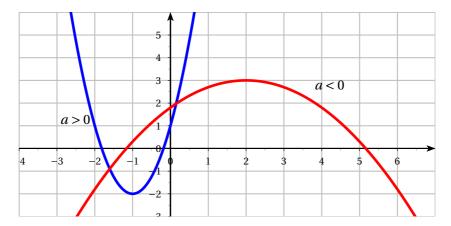
1.4 Courbe représentative

Propriété 3 (Parabole).

Dans un repère orthogonal, la courbe représentative d'une fonction polynomiale du second degré est une *parabole*.

On appelle sommet de la parabole le point d'abscisse $\alpha=-\frac{b}{2a}$. Ses coordonnées sont $S\left(\alpha;\beta\right)$ Cette courbe admet un axe de symétrie d'équation $x=\alpha=-\frac{b}{2a}$.

Le coefficient a de la fpsd détermine la forme et l'orientation de la parabole (« vers le haut » si a > 0 et « vers le bas » si a < 0).



2 Équations du second degré

2.1 Racines d'un trinôme

Dans cette partie, nous allons entretenir un flou artistique au sujet des polynômes et fonctions polynômes associées. Vous définirez précisément ce type d'objet l'an prochain.

Définition 2 (Racine d'un polynôme).

Une racine d'un trinôme du second degré $P(X) = aX^2 + bX + c$ est un nombre r tel que P(r) = 0. Les racines du trinôme sont donc des solutions de l'équation du second degré $ax^2 + bx + c = 0$.

■ Exemple 3:

Justifier que 1 est une racine du trinôme $3x^2 - 4x + 1$

Remarque 1 (Racine évidente).

Lorsque l'on observe « à l'œil nu » qu'un nombre est une racine d'un polynôme, on parle de *racine évidente*. On cherche toujours, lorsqu'on a un trinôme, s'il a des racines évidentes parmi 1, -1, 2, -2, 3, -3.

Propriété 4 (Factorisation d'un trinôme par X - r).

Si P est un trinôme du second degré tel que $P(X) = aX^2 + bX + c$ et que r est une racine du trinôme, alors P admet une écriture factorisée du type P(X) = a(X - r)(X - s), où s est un nombre réel.

Démonstration

$$r$$
 est une racine de $P \iff P(r) = 0 \iff ar^2 + br + c = 0 \iff \underline{c = -ar^2 - br}$
 $\iff P(X) = aX^2 + bX - ar^2 - br$
 $= a(X^2 - r^2) + b(X - r)$
 $= a(X - r)(X + r) + b(X - r)$
 $= (X - r)\left(a(X + r) + b\right)$
 $= a(X - r)\left(X + r + \frac{b}{a}\right)$
On en déduit que $s = -r - \frac{b}{a}$ est aussi une racine de P

■ Exemple 4:

$$\overline{3X^2 - 4X + 1} = (X - 1)(\dots)$$

Définition 3 (Forme factorisée d'un trinôme).

Si P est un trinôme du second degré de racines r et s, alors P admet une écriture factorisée P(X) = a(X-r)(X-s).

■ Exemple 5:

$$\overline{3X^2 - 4X + 1} = 3(X - 1)(\dots)$$

On a donc le polynôme $3X^2 - 4X + 1$ qui admet deux racines : ... et ...

Propriété 5 (Somme et produit des racines d'un trinôme).

Si r et s sont les racines d'un polynôme de degré $2 P(X) = aX^2 + bX + c$, alors

Démonstration

Si r et s sont les racines d'un trinôme $P(X) = aX^2 + bX + c$, alors P admet une écriture factorisée, P(X) = a(X - r)(X - s).

Si on développe l'expression, on trouve $P(X) = aX^2 - a(r+s)X + ars$.

Comme deux polynômes sont égaux si et seulement si leurs coefficients sont égaux, alors on peut identifier :

$$\begin{cases} b = -a(r+s) \\ c = ars \end{cases} \iff \begin{cases} r+s = -\frac{b}{a} \\ r \times s = \frac{c}{a} \end{cases}$$

2.2 Méthode de résolution systématique

On rappelle que toute fonction polynôme du second degré f a une écriture dite canonique de la forme $f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$

Définition 4 (Discriminant d'un trinôme).

Le discriminant d'un trinôme $P(X) = aX^2 + bX + c$ est le nombre

$$\Lambda = b^2 - 4ac$$

Exemple 6:

Déterminer le discriminant du trinôme $3X^2 - 4X + 1$

Propriété 6 (Rôle du discriminant).

- Si $\Delta < 0$ alors le trinôme n'a pas de racines réelles, la parabole de la fpsd ne coupe pas l'axe des abscisses, elle est soit au-dessus, soit au-dessous de l'axe horizontal.
- Si $\Delta = 0$ alors le trinôme a une seule racine réelle $r = -\frac{b}{2a}$ (dite « double »). La parabole est tangente à l'axe (Ox).
- Si $\Delta > 0$ alors le trinôme a 2 racines réelles : $r_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$. La parabole a deux intersections avec l'axe (Ox).

Démonstration

On a
$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$$

• Si $\Delta > 0$ alors $f(x) = a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{\Delta}}{2a}\right)^2\right)$ On factorise : $f(x) = a\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right) = a\left(x - \frac{\sqrt{\Delta}}{2a}\right)$ $\frac{-b+\sqrt{\Delta}}{2a}\Big)\Big(x-\frac{-b-\sqrt{\Delta}}{2a}\Big)$ Et on a bien les deux solutions attendues.

- Si $\Delta = 0$ alors $f(x) = a\left(x + \frac{b}{2a}\right)^2$ et on a bien une solution unique
- Si $\Delta < 0$ alors $f(x) = a\left(\underbrace{\left(x + \frac{b}{2a}\right)^2 \frac{\Delta}{4a^2}}\right)$. f ne s'annule pas sur \mathbb{R} .

3 SIGNE DU TRINÔME Chap 1

► Exercice 2 Résolution d'équations du second degré

Résoudre les équations suivantes :

1.
$$2x^2 - 3 = 0$$

3.
$$x^2 - 4x = 0$$

5.
$$16x^2 - 8x + 13 = 0$$

2.
$$x^2 + 9 = 12x$$

4.
$$6x^2 - x - 1 = 0$$

$$6. \ 2x^2 - 10x + \frac{25}{4} = 0$$

3 Signe du trinôme

Propriété 7 (Signe d'un polynôme de degré 2).

Si f est une fpsd définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ et Δ son discriminant.

- 1. Si $\Delta < 0$ alors, quel que soit $x \in \mathbb{R}$, f(x) est du signe de a. f ne change pas de signe sur \mathbb{R} !
- 2. Si $\Delta = 0$ alors, quel que soit $x \in \mathbb{R}$, f(x) est du signe de a sauf si $x = r_0$ auquel cas $f(r_0) = 0$.
- 3. Si $\Delta > 0$ alors f(x) est du signe de -a entre les racines r_1 et r_2 .

x	$-\infty$	r_1	r_2	+∞
f(x)		 0	 0	

Démonstration

- 1. Si $\Delta < 0$ alors comme $f(x) = a \left(\left(x + \frac{b}{2a} \right)^2 \frac{\Delta}{4a^2} \right)$, on en déduit que $\left(x + \frac{b}{2a} \right)^2 \frac{\Delta}{4a^2} \dots$ et donc $\underline{f(x)}$ est du signe de \underline{a} .
- 2. Si $\Delta=0$ alors $f(x)=\underbrace{a(x-r_0)^2}_{\dots}$, donc f(x) est du signe de a sauf quand $x=r_0$.
- 3. Si $\Delta > 0$ et $r_1 < r_2$ alors comme $f(x) = a(x r_1)(x r_2)$ on peut faire le tableau de signes suivant :

x	$-\infty$	r_1	r_2	+∞
$x-r_1$				
$x-r_2$				
$(x-r_1)(x-r_2)$				
$a(x-r_1)(x-r_2)$				

Compléter la démonstration à l'aide de la vidéo.

► Exercice 3 Étude de signe

Étudier le signe de $f(x) = 2x^2 + 5x - 3$.

► Exercice 4 Application : Résolution d'inéquations

Résoudre les inéquations suivantes

1.
$$-6x^2 - 10x + 3 < -4 + x$$

2. $\frac{3x - 13}{x^2 + x + 1} \le -1$

3.
$$\frac{5}{x+7} - \frac{2}{2x-1} > \frac{7}{9(x-1)}$$

4 Tableau récapitulatif

	Forme développée	Forme canonique	Forme factorisée (si $\Delta \geqslant 0$)
ALG	$f(x) = ax^2 + bx + c$	$a\left(x - \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$ $= a(x - \alpha)^2 + \beta$	$a(x-r_1)(x-r_2)$
	$\Delta = b^2 - 4ac$	$=a(x-\alpha)^2+\beta$	$\operatorname{ev^t} r_1 = r_2 \operatorname{si} \Delta = 0$
GEO	orientation de la parabole	position de la parabole (H-V)	intersections avec l'axe des
			abscisses
	(signe de a)	Sommet: $S\left(\underbrace{\frac{-b}{2a}}_{\alpha}; \underbrace{-\frac{\Delta}{4a}}_{\beta=f(\alpha)}\right)$	$r_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$
APP°	Remplacer x par des valeurs	Image parabole	Eqn/ Inéq