Devoir à la Maison n°13

Soit α un réel non-nul. Le but de ce devoir est de démontrer que α et e^{α} ne peuvent être tous les deux rationnels.

Soit n un entier naturel. On note :

$$P_n = X^n (1 - X)^n$$
 puis $L_n = \frac{1}{n!} P_n^{(n)}$.

On suppose pour l'instant que α est strictement positif, et on pose :

$$I_n = \int_0^1 e^{\alpha t} L_n(t) \, \mathrm{d}t.$$

1. (a) Démontrer par récurrence finie que pour tout $k \in \{0, ..., n\}$:

$$I_n = \frac{(-\alpha)^k}{n!} \int_0^1 e^{\alpha t} P_n^{(n-k)}(t) dt.$$

- (b) Démontrer que I_n est non-nulle.
- (c) Justifier que pour tout $t \in [0,1]$: $t(1-t) \leqslant \frac{1}{4}$.

En déduire que :

$$|I_n| \leqslant \frac{e^{\alpha}}{n!} \left(\frac{\alpha}{4}\right)^n$$
.

2. En utilisant la formule du binôme, démontrer que :

$$L_n = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{n+k}{n} X^k.$$

3. Dans cette question on démontre que si α est un entier strictement positif, alors e^{α} est irrationnel. On suppose donc $\alpha \in \mathbb{N}^*$.

Pour tout $k \in \mathbb{N}$ on pose $J_k = \int_0^1 e^{\alpha t} t^k dt$.

(a) Démontrer que pour tout $k \in \mathbb{N}^*$:

$$J_k = \frac{1}{\alpha} (e^{\alpha} - k J_{k-1}).$$

(b) En déduire que pour tout $k \in \mathbb{N}$ il existe deux entiers a_k et b_k tels que :

$$J_k = \frac{1}{\alpha^{k+1}} (a_k + b_k e^{\alpha}).$$

(c) Démontrer qu'il existe deux entiers c_n et d_n tels que :

$$I_n = \frac{1}{\alpha^{n+1}}(c_n + d_n e^{\alpha}).$$

(d) On suppose de plus que e^{α} est rationnel : $e^{\alpha} = \frac{p}{q}$ avec $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$. Démontrer que :

$$|I_n| \geqslant \frac{1}{q\alpha^{n+1}}.$$

- (e) En déduire une contradiction et conclure la question.
- 4. (a) Démontrer que si α est un rationnel non-nul alors e^{α} est irrationnel. Justifier que ceci revient à dire que si α est un réel non-nul alors α et e^{α} ne peuvent être tous les deux rationnels.
 - (b) Démontrer que si α est rationnel strictement positif alors $\ln \alpha$ est irrationnel.