Corrigé du Devoir à la Maison n°10

Partie A.

1. Soit \mathcal{P}_n la propriété :

 P_n est de degré 2n+1 et son coefficient dominant est $(-4)^n$.

On démontre par récurrence double que cette propriété est vraie pour tout $n \in \mathbb{N}$.

<u>Initialisation</u>. Comme $P_0 = X$ et $P_1 = -4X^3 + 3X$ alors les propriétés \mathcal{P}_0 et \mathcal{P}_1 sont vraies.

<u>Hérédité</u>. Supposons que pour un certain $n \in \mathbb{N}$ les propriétés \mathcal{P}_n et \mathcal{P}_{n+1} sont vraies. Le polynôme P_{n+2} est défini par :

$$P_{n+2} = 2(1 - 2X^2)P_{n+1} - P_n = -4X^2P_{n+1} + 2P_{n+1} - P_n$$

Par hypothèse de récurrence P_{n+1} est de degré 2n+3 et P_n est de degré 2n+1, donc :

$$\deg(-4X^{2}P_{n+1}) = 2n + 5 \qquad \deg(2P_{n+1}) = 2n + 3 \qquad \deg(-P_{n}) = 2n + 1$$

Le premier de ces degrés est strictement supérieur aux deux autres, donc par propriété:

$$\deg\left(-4X^{2}P_{n+1} + 2P_{n+1} - P_{n}\right) = \deg\left(-4X^{2}P_{n+1}\right) = 2n + 5$$

Ainsi P_{n+2} est de degré 2n+5.

De plus, le coefficient dominant de P_{n+1} est de $(-4)^{n+1}$ par hypothèse de récurrence, donc celui de $-4P_{n+1}$ est $(-4)^{n+2}$. Les polynômes $2P_{n+1}$ et $-P_n$ sont de degrés strictement inférieurs à 2n+5, donc le coefficient dominant de P_{n+2} est $(-4)^{n+2}$.

La propriété \mathcal{P}_{n+2} est donc vraie.

Nous avons démontré que la propriété \mathcal{P}_n est héréditaire.

Conclusion. Par récurrence double la propriété \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}^*$.

2. (a) Pour tout $n \in \mathbb{N}$ on note \mathcal{P}_n la propriété :

$$\forall t \in \mathbb{R}$$
 $P_n(\sin t) = \sin((2n+1)t)$

On démontre par récurrence double que cette propriété est vraie pour tout $n \in \mathbb{N}$. Initialisation. Comme $P_0 = X$ alors $P_0(\sin t) = \sin t$. Or $\sin((2n+1)t) = \sin t$ pour n = 0, donc la propriété \mathcal{P}_0 est vraie.

D'après les formules de trigonométrie, pour tout $t \in \mathbb{R}$:

$$\sin 3t = \sin(2t + t) = \sin(2t)\cos t + \sin t\cos(2t)$$

$$= 2\sin t\cos^2 t + \sin t \left(1 - 2\sin^2 t\right)$$

$$= 2\sin t - 2\sin^3 t + \sin t - 2\sin^3 t = 3\sin t - 4\sin^3 t$$

Comme $P_1 = 3X - 4X^3$ alors $P_1(\sin t) = \sin(3t)$, donc la propriété \mathcal{P}_1 est vraie.

<u>Hérédité.</u> Supposons que pour un certain $n \in \mathbb{N}^*$ les propriétés \mathcal{P}_{n-1} et \mathcal{P}_n sont vraies, *i.e.*, $P_{n-1}(\sin t) = \sin((2n-1)t)$ et $P_n(\sin t) = \sin((2n+1)t)$.

Par définition de la suite (P_n) :

$$P_{n+1} = 2(1 - 2X^2)P_n - P_{n-1}$$

Ceci donne:

$$P_{n+1}(\sin t) = 2(1 - 2\sin^2 t)\sin((2n+1)t) - \sin((2n-1)t)$$

$$= 2\cos(2t)\sin((2n+1)t) - \sin((2n-1)t)$$

$$= \sin((2n+3)t) + \sin((2n-1)t) - \sin((2n-1)t) = \sin((2n+3)t)$$

On a utilisé la formule :

$$\cos a \sin b = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

Ainsi $P_{n+1}(\sin t) = \sin((2n+3)t)$, donc la propriété \mathcal{P}_{n+1} est vraie.

L'hérédité est établie.

<u>Conclusion.</u> Par récurrence double on a démontré que :

$$\forall n \in \mathbb{N} \qquad \forall t \in \mathbb{R} \qquad P_n(\sin t) = \sin((2n+1)t)$$
 (1)

(b) Pour t = 0 et $n \in \mathbb{N}$ quelconque la relation ci-dessus donne $P_n(0) = 0$, donc 0 est racine de P_n .

Ceci implique que X divise P_n .

Il existe donc $Q_n \in \mathbb{R}[X]$ tel que $P_n = XQ_n$.

3. (a) Les fonctions polynomiales et la fonction sinus sont dérivables, donc par composition les fonctions $t \mapsto P_n(\sin t)$ et $t \mapsto \sin((2n+1)t)$ sont dérivables. La relation du (1) donne par dérivation :

$$\forall t \in \mathbb{R}$$
 $\cos t P'_n(\sin t) = (2n+1)\cos((2n+1)t)$

Pour t = 0 on obtient $P'_n(0) = (2n + 1)$.

(b) On dérive de nouveau la relation précédente :

$$\forall t \in \mathbb{R}$$
 $-\sin t \, P'_n(\sin t) + \cos^2 t \, P''_n(\sin t) = -(2n+1)^2 \sin((2n+1)t)$

On peut écrire ceci sous la forme :

$$\forall t \in \mathbb{R} \qquad (1 - \sin^2 t) P_n''(\sin t) - \sin t \, P_n'(\sin t) + (2n + 1)^2 P_n(\sin t) = 0$$

La fonction $\sin : \mathbb{R} \to [-1, 1]$ est surjective donc :

$$\forall x \in [-1, 1] \qquad (1 - x^2) P_n''(x) - x P_n'(x) + (2n + 1)^2 P_n(x) = 0$$

Le polynôme nul est le seul polynôme admettant une infinité de racines, donc :

$$(1 - X^2)P_n'' - XP_n' + (2n+1)^2P_n = 0$$
(2)

(c) On rappelle que $P_n(0) = 0$ et $P'_n(0) = (2n+1)$. La relation (2) donne par spécialisation en 0: $P''_n(0) = 0$ Puis par dérivation :

$$(1 - X^2)P_n^{(3)}(0) - 3XP_n'' + 4n(n+1)P_n' = 0$$

La spécialisation en 0 donne : $P_n^{(3)}(0) = -4n(n+1)(2n+1)$

Comme $P_n = XQ_n$ alors :

$$P'_n = Q_n + XQ'_n$$
 $P''_n = 2Q'_n + XQ''_n$ $P_n^{(3)} = 3Q''_n + XQ_n^{(3)}$

Les spécialisations en 0 donnent :

$$Q_n(0) = P'_n(0) = (2n+1)$$
 $Q'_n(0) = \frac{1}{2}P''_n(0) = 0$
 $Q''_n(0) = \frac{1}{3}P_n^{(3)}(0) = -\frac{4}{3}n(n+1)(2n+1)$

4. (a) D'après la question 3a:

$$P_n(\sin t) = 0 \qquad \Longleftrightarrow \qquad \sin((2n+1)t) = 0$$

Donc:

$$P_n(\sin t) = 0 \iff (2n+1)t = k\pi \quad \text{avec} \quad k \in \mathbb{Z}$$

L'ensemble des solutions de l'équation $P_n(\sin t) = 0$ est donc :

$$S_n = \left\{ \frac{k\pi}{2n+1} \mid k \in \mathbb{Z} \right\}$$

(b) Soit x une racine de P_n appartenant à l'intervalle [-1,1].

La fonction $\sin : \mathbb{R} \to [-1,1]$ est surjective, donc il existe $t \in \mathbb{R}$ tel que $x = \sin t$. Comme $P_n(x) = 0$ alors $P_n(\sin t) = 0$, et d'après la question précédente il existe $k \in \mathbb{Z}$ tel que $t = \frac{k\pi}{2n+1}$.

Les racines de P_n appartenant à l'intervalle [-1,1] sont donc les $\sin\left(\frac{k\pi}{2n+1}\right)$ où k est un entier.

(c) Soit k un entier. Si $k \in \{-n, \dots, 0, \dots n\}$ alors $-n \leqslant k \leqslant n$ donc :

$$-\frac{n\pi}{2n+1} \le \frac{k\pi}{2n+1} \le \frac{n\pi}{2n+1}$$
 puis $-\frac{\pi}{2} < \frac{k\pi}{2n+1} < \frac{\pi}{2}$

La fonction sinus est injective sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Comme les entiers k compris entre -n et n sont distincts alors les réels sin $\left(\frac{k\pi}{2n+1}\right)$ sont distincts.

Or ils sont au nombre de 2n+1, et le polynôme P_n est de degré 2n+1, donc il ne peut avoir plus de 2n+1 racines. Ainsi les $\sin\left(\frac{k\pi}{2n+1}\right)$ sont toutes les racines de P_n .

L'ensemble des racines de P_n est finalement $\left\{\sin\left(\frac{k\pi}{2n+1}\right) \mid -n \leqslant k \leqslant n\right\}$.

(d) Connaissant toutes les racines de P_n et son coefficient directeur on peut écrire sa forme factorisée :

$$P_n = (-4)^n \prod_{k=-n}^n \left(X - \sin\left(\frac{k\pi}{2n+1}\right) \right).$$

Partie B.

1. (a) Les éléments de l'ensemble \mathcal{D} sont différents de tous les α_i donc :

$$\forall x \in \mathcal{D} \qquad |f(x)| > 0.$$

Ceci montre que la fonction $g: x \mapsto \ln |f(x)|$ est bien définie sur \mathcal{D} .

La fonction f est polynomiale donc dérivable. Elle ne s'annule pas sur \mathcal{D} donc la fonction |f| est dérivable par composition, puis g est dérivable.

Si u est une fonction dérivable ne s'annulant alors la dérivée de $\ln |u|$ est $\frac{u'}{u}$.

On obtient donc pour tout $x \in \mathcal{D}$: $g'(x) = \frac{f'(x)}{f(x)}$.

De plus, comme $f(x) = \lambda(x - \alpha_1) \cdots (x - \alpha_n)$ alors :

$$g(x) = \ln\left(|\lambda| \prod_{i=1}^{n} |x - \alpha_i|\right) = \ln|\lambda| + \sum_{i=1}^{n} \ln|x - \alpha_i|.$$

Par dérivation:

$$\forall x \in \mathcal{D}$$
 $\frac{f'(x)}{f(x)} = \sum_{k=1}^{n} \frac{1}{x - \alpha_i}.$

(b) On applique le résultat précédent à la fonction $f(x) = Q_n(x)$.

Comme $P_n = XQ_n$ alors:

$$\forall x \in \mathbb{R} \qquad Q_n(x) = (-4)^n \prod_{\substack{k=-n\\k\neq 0}}^{k=n} \left(x - \sin\left(\frac{k\pi}{2n+1}\right) \right)$$

Comme $\sin\left(\frac{-k\pi}{2n+1}\right) = -\sin\left(\frac{k\pi}{2n+1}\right)$ alors :

$$\forall x \in \mathbb{R}$$
 $Q_n(x) = (-4)^n \prod_{k=1}^n \left(x - \sin\left(\frac{k\pi}{2n+1}\right)\right) \left(x + \sin\left(\frac{k\pi}{2n+1}\right)\right)$

On note $\mathcal{D} = \mathbb{R} \setminus \left\{ \pm \sin\left(\frac{k\pi}{2n+1}\right) \mid k = 1\dots, n \right\}$. D'après le résultat de la question précédente :

$$\forall x \in \mathcal{D} \qquad \frac{Q_n'(x)}{Q_n(x)} = \sum_{k=1}^n \left(\frac{1}{x - \sin\left(\frac{k\pi}{2n+1}\right)} + \frac{1}{x + \sin\left(\frac{k\pi}{2n+1}\right)} \right)$$
$$= \sum_{k=1}^n \frac{2x}{x^2 - \sin^2\left(\frac{k\pi}{2n+1}\right)}.$$

Il s'agit bien du résultat attendu.

(c) Les fonctions ci-dessus sont dérivables et par dérivation :

$$\forall x \in \mathcal{D} \qquad \frac{Q_n''(x)Q_n(x) - Q_n'^{2}(x)}{Q_n^{2}(x)} = \sum_{k=1}^{n} \frac{2\left(x^2 - \sin^2\left(\frac{k\pi}{2n+1}\right)\right) - 4x^2}{\left(x^2 - \sin^2\left(\frac{k\pi}{2n+1}\right)\right)^2}$$
$$= \sum_{k=1}^{n} -\frac{2\left(x^2 + \sin^2\left(\frac{k\pi}{2n+1}\right)\right)}{\left(x^2 - \sin^2\left(\frac{k\pi}{2n+1}\right)\right)^2}$$

On sait que $Q_n'(0) = 0$. Pour x = 0, en divisant par -2 la relation ci-dessus donne l'égalité souhaitée :

$$\sum_{k=1}^{n} \frac{1}{\sin^2\left(\frac{k\pi}{2n+1}\right)} = -\frac{Q_n''(0)}{2Q_n(0)}$$

- 2. (a) La fonction f est supposée dérivable sur l'intervalle [0, x] donc :
 - f est continue sur [0, x],
 - f est dérivable sur]0, x[,
 - Pour tout $t \in]0, x[: 0 \leqslant f'(t) \leqslant x^k$.

D'après l'inégalité des accroissements finis :

$$0(x-0) \leqslant f(x) - f(0) \leqslant x^{k}(x-0).$$

Ceci donne bien le résultat attendu : $0 \le f(x) - f(0) \le x^{k+1}$.

(b) La fonction $h: x \mapsto \sin x - x + \frac{x^3}{6}$ est de classe \mathcal{C}^{∞} , ses premières dérivées sont :

$$\forall x \in \mathbb{R}$$
 $h'(x) = \cos x - 1 + \frac{x^2}{2}$ $h''(x) = -\sin x + x$ $h'''(x) = -\cos x + 1$ $h^{(4)}(x) = \sin x$.

On sait que : $\forall t \in \left[0, \frac{\pi}{2}\right] \quad 0 \leqslant \sin t \leqslant t$.

Ceci donne, pour $x \in \left[0, \frac{\pi}{2}\right]$ fixé : $\forall t \in [0, x] \quad 0 \leqslant h^{(4)}(t) \leqslant t \leqslant x$.

La fonction h''' est dérivable, donc en appliquant le résultat de la question précédente :

$$0 \leqslant h'''(x) - h'''(0) \leqslant x^2.$$

Comme h'''(0) = 0 alors : $0 \le h'''(x) \le x^2$.

Ce résultat est valable pour tout $x \in \left[0, \frac{\pi}{2}\right]$.

On reproduit ceci pour h'' puis h' et enfin h, comme h''(0) = h'(0) = h(0) = 0 alors on obtient successivement :

$$0 \leqslant h''(x) \leqslant x^3$$
 $0 \leqslant h'(x) \leqslant x^4$ $0 \leqslant h(x) \leqslant x^5$.

Ceci montre que :

$$\forall x \in \left[0, \frac{\pi}{2}\right] \qquad 0 \leqslant \frac{h(x)}{x^3} \leqslant x^2.$$

Par théorème d'encadrement $\lim_{\substack{x\to 0\\>}} \frac{h(x)}{x^3} = 0$ et donc : $h(x) = o(x^3)$.

3. Pour tout $x \in \left]0, \frac{\pi}{2}\right]$ on peut écrire $\sin x = x - \frac{x^3}{6} + h(x)$, où h est la fonction définie dans la question précédente.

On en déduit, pour tout $x \in \left]0, \frac{\pi}{2}\right]$:

$$\varphi(x) = \frac{1}{\sin^2 x} - \frac{1}{x^2} = \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = \frac{(x - \sin x)(x + \sin x)}{x^2 \sin^2 x}$$

$$= \frac{\left(\frac{x^3}{6} - h(x)\right) \left(2x - \frac{x^3}{6} + h(x)\right)}{x^2 \left(x - \frac{x^3}{6} + h(x)\right)^2}$$

$$= \frac{\frac{x^3}{6} \left(1 - \frac{6}{x^3} h(x)\right) \times 2x \left(1 - \frac{x^2}{12} + \frac{1}{2x} h(x)\right)}{x^4 \left(1 - \frac{x^2}{6} + \frac{1}{x} h(x)\right)^2} = \frac{1}{3} \frac{\left(1 - 6\frac{h(x)}{x^3}\right) \left(1 - \frac{x^2}{12} + \frac{x^2}{2}\frac{h(x)}{x^3}\right)}{\left(1 - \frac{x^2}{6} + x^2\frac{h(x)}{x^3}\right)^2}$$

Comme $\frac{h(x)}{x^3} \xrightarrow[x \to 0]{} 0$ alors $\lim_{x \to 0} \varphi(x) = \frac{1}{3}$.

Cette limite est finie donc φ est prolongeable par continuité en 0.

La fonction ainsi prolongée est continue sur $\left[0, \frac{\pi}{2}\right]$.

Une fonction continue sur un segment est bornée, donc φ est bornée sur $\left[0,\frac{\pi}{2}\right]$.

A fortiori la fonction φ est bornée sur $\left]0, \frac{\pi}{2}\right]$.

4. On note M la borne supérieure de la fonction $|\varphi|$, bien définie en vertu de la question précédente.

Soit $n \in \mathbb{N}^*$. Pour tout k = 1, ..., n, comme $\frac{k\pi}{2n+1} \in \left]0, \frac{\pi}{2}\right]$ alors:

$$\left|\varphi\left(\frac{k\pi}{2n+1}\right)\right| \leqslant M.$$

Par inégalité triangulaire :

$$\left| \sum_{k=1}^{n} \varphi\left(\frac{k\pi}{2n+1}\right) \right| \leqslant \sum_{k=1}^{n} \left| \varphi\left(\frac{k\pi}{2n+1}\right) \right| \leqslant nM. \tag{3}$$

Or on calcule:

$$\sum_{k=1}^{n} \varphi\left(\frac{k\pi}{2n+1}\right) = \sum_{k=1}^{n} \left(\frac{1}{\sin^2\left(\frac{k\pi}{2n+1}\right)} - \frac{(2n+1)^2}{(k\pi)^2}\right) = \sum_{k=1}^{n} \frac{1}{\sin^2\left(\frac{k\pi}{2n+1}\right)} - \frac{(2n+1)^2}{\pi^2} \sum_{k=1}^{n} \frac{1}{k^2}.$$

D'après la question 1c de cette partie :

$$\sum_{k=1}^{n} \varphi\left(\frac{k\pi}{2n+1}\right) = -\frac{Q_n''(0)}{2Q_n(0)} - \frac{(2n+1)^2}{\pi^2} S_n.$$

On a calculé $Q_n''(0) = -\frac{4}{3}n(n+1)(2n+1)$ et $Q_n(0) = (2n+1)$, donc l'inégalité (3) donne :

$$\forall n \in \mathbb{N}^* \qquad \left| \frac{2}{3} n(n+1) - \frac{(2n+1)^2}{\pi^2} S_n \right| \leqslant nM$$

En divisant par n(n+1) :

$$\forall n \in \mathbb{N}^* \qquad \left| \frac{2}{3} - \frac{(2n+1)^2}{n(n+1)\pi^2} S_n \right| \leqslant \frac{M}{n+1}$$

Par théorème d'encadrement :

Comme
$$\left(\frac{M}{n+1}\right) \xrightarrow[n \to +\infty]{} 0$$
 alors $\left(\frac{(2n+1)^2}{n(n+1)\pi^2} S_n\right) \xrightarrow[n \to +\infty]{} \frac{2}{3}$.

On en déduit :

$$S_n \underset{(+\infty)}{\sim} \frac{2}{3} \frac{n(n+1)\pi^2}{(2n+1)^2} \underset{(+\infty)}{\sim} \frac{\pi^2}{6}$$

Ainsi la suite (S_n) converge vers $\frac{\pi^2}{6}$:

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$