Feuille de T. D. B6 Structures algébriques

Exercices de cours _

① Soit * une loi de composition interne sur un ensemble E. On suppose que E admet un élément neutre e pour * et que la loi * est associative.

Démontrer si un élément x de E admet un symétrique alors celui-ci est unique.

(2) Soit E un ensemble.

Quels sont les éléments symétrisables de $\mathcal{P}(E)$ pour la loi \cap ? Pour la loi \cup ?

 $\begin{cases} {\bf 3} {\bf D}$ émontrer que l'ensemble ${\mathbb U}$ muni de la multiplication est un groupe.

Démontrer que pour tout $n \in \mathbb{N}^*$ l'ensemble \mathbb{U}_n muni de la multiplication est un groupe.

(4) Soit $(\mathcal{B}(\mathbb{R}), \circ)$ le groupe des bijections de \mathbb{R} .

Démontrer que l'ensemble Aff des applications affines $x\mapsto ax+b$ telles que a est non-nul est un sous-groupe de $\mathcal{B}(\mathbb{R})$.

Est-il commutatif?

(5) a. Justifier que les applications suivantes sont des morphismes de groupes.

$$f_{1}: (\mathbb{Z}, +) \longrightarrow (\mathbb{Z}, +)$$

$$n \longmapsto 3n$$

$$f_{2}: (\mathbb{Z}, +) \longrightarrow (\mathbb{C}^{*}, \times)$$

$$n \longmapsto j^{n}$$

$$f_{3}: (\mathbb{C}^{*}, \times) \longrightarrow (\mathbb{R}^{*}, \times)$$

$$z \longmapsto |z|$$

b. Déterminer le noyau et l'image de ces morphismes.

Lesquels sont injectifs? Surjectifs?

6 Soit $A = \mathcal{F}(\mathbb{R})$ l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} .

Pourquoi le triplet $(A, +, \circ)$ n'est-il pas un anneau?

 $\overline{7}$ Démontrer que dans un anneau intègre A on peut simplifier par un élément non-nul :

Soit $a \in A \setminus \{0_A\}$. Alors:

$$\forall (x,y) \in A^2$$
 $ax = ay \implies x = y$ et $xa = ya \implies x = y$

 $\ensuremath{ \bigodot 6 }$ Démontrer que le seul sous-anneau de $\ensuremath{ \mathbb Z}$ est $\ensuremath{ \mathbb Z}$ lui-même.

_ Travaux dirigés _

1 Soit E un ensemble muni de deux lois de composition interne \star et \circ , admettant chacune un élément neutre, noté e pour \star et f pour \circ . On suppose que :

$$\forall (x,y,z,t) \in E^4 \qquad (x \star y) \circ (z \star t) = (x \circ z) \star (y \circ t)$$

- a. Démontrer que e = f.
- b. Démontrer que les lois \star et \circ sont égales.
- c. Démontrer que cette loi est commutative et associative.

2 Soit I =]-1,1[. On définit :

$$\forall (x,y) \in I^2$$
 $x \oplus y = \frac{x+y}{1+xy}$

- a. Démontrer que \oplus est une loi de composition interne de I.
- b. Démontrer que le couple (I,\oplus) est un groupe.
- c. Calculer les itérés de $\frac{1}{2}$.
- d. Démontrer que l'application th : $(\mathbb{R}, +) \to (I, \oplus)$ est un isomorphisme de groupes.
- $\boxed{\mathbf{3}}$ Soit E un ensemble.

Les couples $(\mathcal{P}(E), \cap)$ et $(\mathcal{P}(E), \cup)$ sont-ils des groupes?

4 Soit M une matrice de taille (n, n) où $n \in \mathbb{N}^*$, à coefficient dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Démontrer que

$$Z(M) = \{ A \in \operatorname{GL}_n(\mathbb{K}) \mid AM = MA \}$$

est un sous-groupe de $(GL_n(\mathbb{K}), \times)$.

 $\boxed{\bf 5}$ Soit (G,*) un groupe d'élément neutre e.

On suppose que pour tout $x \in G$: $x^2 = e$ Démontrer que G est abélien.

6 Soit (G,*) un groupe d'élément neutre e. Soit x et y deux éléments de G tels que :

$$xyx = y$$
 et $yxy = x$

Démontrer que $x^2y^2 = e$ puis que $x^4 = y^4 = e$.

- **7** Soit (G, *) un groupe fini.
- a. Démontrer que dans la table de multiplication de G, chaque élément de G apparaît au plus une fois dans chaque colonne et dans chaque ligne.
- b. En déduire que chaque élément de G apparaît une et une seule fois dans chaque colonne et dans chaque ligne de la table de multiplication.

8 Soit (G, *) un groupe à trois éléments.

Soit e, a, b ses trois éléments, e étant le neutre.

Donner la table de multiplication de G.

Donner ensuite un exemple de tel groupe.

- **9** Soit (G,*) un groupe à quatre éléments, et soit e son élément neutre.
- a. On suppose que tout élément x de G vérifie $x^2 = e$. En notant e, a, b, c les éléments de G donner sa table de multiplication.

Le groupe G est-il commutatif?

- b. On suppose qu'il existe $a \in G$ tel que $a^2 \neq e$. Donner la table de multiplication de G.
- **10** Soit (G, *) un groupe.
- a. Démontrer que les applications $g\mapsto ag$ et $g\mapsto ga$ sont des bijections de G.

Sont-elles des endomorphismes?

- b. Démontrer que l'application $g \mapsto aga^{-1}$ est un automorphisme de G.
- c. Donner une condition nécessaire et suffisante pour que l'application $g\mapsto g^{-1}$ soit un automorphisme de groupes.
- 11 Soit G l'ensemble des bijections de l'ensemble $X = \{a, b, c\}.$
- a. Justifier que (G, \circ) est un groupe fini.
- b. On note e l'élément neutre de G, et τ et σ les applications :

Démontrer que :

$$G = \{e, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2\}$$

Identifier l'élément $\sigma\tau$.

- Le but de cet exercice est de déterminer tous les sous-groupes de $(\mathbb{Z}, +)$.
- a. Démontrer que pour tout $m \in \mathbb{N}, m\mathbb{Z}$ est un sous-groupe de $\mathbb{Z}.$

Soit H un sous-groupe de \mathbb{Z} .

- b. Démontrer que si $H \cap \mathbb{N}^*$ est non-vide alors il admet un minimum m, puis que $H = m\mathbb{Z}$.
- c. Qu'en est-il si $H \cap \mathbb{N}^*$ est vide?
- d. Conclure.
- 13 Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et n un entier naturel nonnul. On définit l'application :

$$f: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})$$

 $M \longmapsto \frac{1}{2}(M + {}^tM)$

- a. Justifier que f est un endomorphisme du groupe $(\mathcal{M}_n(\mathbb{K}), +)$.
- b. Déterminer le noyau et l'image de f.

14 Soit $G = \mathbb{R}^* \times \mathbb{R}$ muni de la loi * définie par : $\forall ((x,y),(x',y')) \in G^2$

$$(x,y)*(x',y') = (xx',yx'+y')$$

- a. Démontrer que (G, *) est un groupe. Est-il abélien?
- b. Démontrer que $H=\{(x,0)\mid x\in\mathbb{R}^*\}$ et $K=\{(1,y)\mid y\in\mathbb{R}\}$

sont deux sous-groupes abéliens de (G, *).

c. Démontrer que les applications :

$$\varphi: (\mathbb{R}^*, \times) \longrightarrow G \quad \text{et} \quad \psi: (\mathbb{R}, +) \longrightarrow G$$
$$x \longmapsto (x, 0) \quad y \longmapsto (1, y)$$

sont des morphismes de groupes.

- d. Donner les noyaux et les images de ces morphismes. Que retrouve-t-on?
- 15 Soit (G, *) un groupe, H un sous-groupe de G. On définit la relation \sim sur G par :

$$x \sim y \iff x^{-1}y \in H$$

- a. Démontrer que la relation \sim est une relation d'équivalence.
- b. Soit $x \in G$ et Cl(x) sa classe d'équivalence. Démontrer que Cl(x) = xH.
- c. Démontrer pour tout $x \in G$ l'application

$$m_x: H \longrightarrow xH$$
 $h \longmapsto xh$

est bijective.

- d. On suppose que G est un groupe fini. Démontrer que le cardinal de H divise celui de G.
- **16** Pour m et n entiers naturels non-nuls on pose :

$$f: \mathbb{U}_n \longrightarrow \mathbb{U}_n.$$
$$z \longmapsto z^m.$$

- a. Justifier que f est bien définie et que c'est un endomorphisme du groupe (\mathbb{U}_n, \times) .
- b. Démontrer que le noyau de f est $\mathbb{U}_{m \wedge n}$.
- $\boxed{ 17 }$ Soit A un anneau, a et b deux éléments de A.
- a. Démontrer que :

$$aba = 1 \iff (a^2b = ba^2 = 1)$$

- b. Démontrer que dans ce cas a et b sont inversibles et commutent.
- 18 Pour tout $(x, y) \in \mathbb{R}$ on pose :

$$x \oplus y = x + y - 1$$
 $x \otimes y = x + y - xy$

- a. Démontrer que (\mathbb{R}, \oplus) est un groupe abélien.
- b. Démontrer que $(\mathbb{R}, \oplus, \otimes)$ est un anneau commutatif
- c. Cet anneau est-il un corps?

 $\boxed{\mathbf{19}} \text{ On note } \mathbb{Q}[\sqrt{2}] = \left\{ a + b\sqrt{2} \mid (a, b) \in \mathbb{Q}^2 \right\}.$

a. Démontrer que $\mathbb{Q}[\sqrt{2}]$ est un sous-anneau de \mathbb{R} .

b. Démontrer que $\mathbb{Q}[\sqrt{2}]$ est un corps. On dit alors que $\mathbb{Q}[\sqrt{2}]$ est un sous-corps de \mathbb{R} .

 $\fbox{ 20 }$ Soit $\Bbb D$ l'ensemble des nombres décimaux.

a. Démontrer que \mathbb{D} est un sous-groupe de $(\mathbb{R}, +)$.

b. Démontrer que $(\mathbb{D}, +, \times)$ est un anneau. Est-il un corps ?

c. Décrire le groupe des inversibles de \mathbb{D} .

21 On note:

$$\mathbb{Z}[i] = \{ a + ib \mid (a, b) \in \mathbb{Z}^2 \}.$$

a. Démontrer que $\mathbb{Z}[i]$ muni de l'addition et de la multiplication des complexes est un anneau.

b. Justifier que l'application $N: z \mapsto |z|^2$ est un morphisme de groupes de (\mathbb{C}^*, \times) dans (\mathbb{R}_+^*, \times) .

c. Vérifier que $N(\mathbb{Z}[i]) \subseteq \mathbb{N}$. En déduire le groupe des inversibles de $\mathbb{Z}[i]$. **22** Soit K un sous-corps de \mathbb{C} , c'est-à-dire un sous-anneau de \mathbb{C} qui est un corps.

Démontrer que $\mathbb{Q} \subseteq K$.

[23] Démontrer que si un anneau intègre est fini alors c'est un corps.

On pourra considérer l'ensemble des a^k où $k \in \mathbb{N}$.

24 Soit K un corps et A un anneau. Démontrer que tout morphisme d'anneaux $f:K\to A$ est injectif.

25 On définit l'ensemble :

$$C = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) \; \middle| \; \; (a,b) \in \mathbb{R}^2 \right\}$$

a. Démontrer que C est un sous-anneau de $(\mathcal{M}_2(\mathbb{R}),+,\times).$

b. Démontrer que C est un corps

c. Démontrer que ce corps est isomorphe à \mathbb{C} , c'està-dire qu'il existe un isomorphisme d'anneaux de C dans \mathbb{C} .