Exercice 9

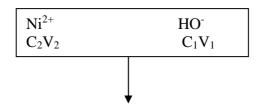
Exercice correspondant à un TP

.Rappels sur la conductimétrie

En conductimétrie, la grandeur physique mesurée est la conductance G de la portion de solution comprise dans la cellule. (d'où la nécessité de vérifier qu'il n'y a pas de bulle d'air emprisonnée sinon on mesure la conductivité de la bulle ...)

La conductivité de la solution σ est reliée à la conductance G selon

$$\frac{\sigma}{\text{Scm}^{-1}} = \frac{\mathbf{K}_{\text{cell}}}{\text{cm}^{-1}} \cdot \mathbf{G}$$


Par ailleurs on a $\sigma = \sum \lambda_i^{\circ} [A_i]$; la somme portant uniquement sur les <u>espèces ioniques</u>

2.Dans la relation précédente , les conductivités molaires ioniques λ_i° sont constantes (indépendantes des concentrations) à condition de travailler en <u>solution très diluées</u> , d'où l'intérêt de rajouter de l'eau en plus <u>d'immerger totalement la cellule</u> .

Enfin si on dispose initialement d'un grand volume , on pourra négliger la dilution au cours du dosage , ce qui permettra <u>d'obtenir des segments de droite</u> pour la représentation de la conductivité en fonction du volume .

1. Lors de la réalisation de la solution S , on observe la formation d'un précipité qui ne peut être que de l'hydroxyde de nickel de formule $Ni(OH)_2$.

Conformément aux exemples vus la réaction de précipitation peut être considérée quantitative En fonction des quantités d'ions Ni^{2+} et HO^- introduits on peut envisager –pour la composition de la solution S – trois cas de figure

1 ^{er} cas	2ème cas	3 ^{ème} cas	
Ni ²⁺ en exces	HO en exces	Aucune espèce en exces	
$C_2V_2 > C_1V_1/2$	$C_1V_1 > 2 C_2V_2$		
Ni ²⁺ ; Ni(HO) _{2(s)}	HO- ; Ni(HO) _{2(s)}	Ni(OH) _{2(s)}	
$C_2V_2 - C_1V_1/2$	$C_1V_1 - 2 C_2V_2$ C_2V_2		

D'autre part l'agent titrant est un acide , il ne peut réagir que sur des composés à caractère basique , c'est-àdire sur HO^- ou sur $Ni(OH)_{2(s)}$; les ions Ni^{2+} n'ont pas de propriétés acides .

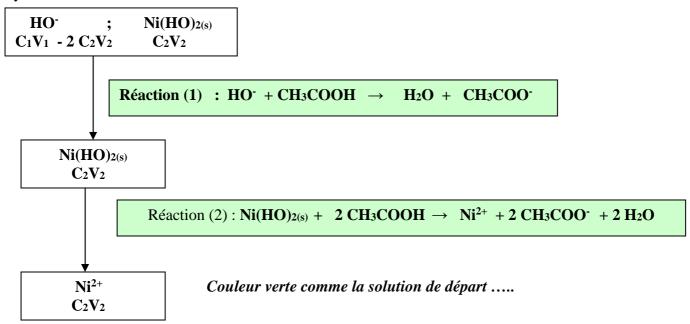
Enfin , la courbe montre au début une forte décroissance de la conductivité , ce qui indique la disparition d'une espèce ionique à forte conductivité molaire ionique : il s'agit de $\mathrm{HO}^{\scriptscriptstyle{-}}$.

En conclusion, on retient le deuxième cas de figure.

Les ions HO- ont été introduits en excès et la solution S est initialement composée d'ions HO- et de précipité

4. Pour déterminer les réactions de dosage il faut réfléchir sur les réactions pouvant se produire lorsqu'on introduit l'acide éthanoïque dans la solution S .

Les observations expérimentales peuvent aussi être utiles :


- 1) le précipité restait présent dans la première phase
- 2) Il disparaissait progressivement dans une deuxième phase et pour un volume de 14 mL , le système redevient parfaitement homogène : on a une solution limpide de couleur verte .

Par conséquent , il faut écrire une réaction traduisant la disparition du précipité ; cette disparition ne pouvant être due qu'à l'évolution de l'un (au moins) des ions issus de sa dissolution : HO^- à propriétés basiques .

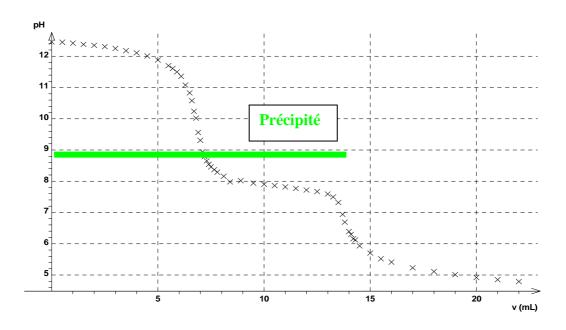
$$Ni(HO)_{2(s)}$$
 \rightleftharpoons Ni^{2+} + 2 HO⁻
2 (HO⁻ + CH₃COOH \rightarrow H₂O + CH₃COOH)

Ni(HO)_{2(s)} + 2 CH₃COOH \rightarrow Ni^{2+} + 2 CH₃COO⁻ + 2 H₂O

Synthèse:

2. Pour déterminer les concentrations, on utilise les relations à l'équivalence

$$\begin{array}{ll} n(CH_3COOH)_{0\to Ve1}=\ n\ (HO^{\text{-}})_{0}=\ C_1V_1-2\ C_2V_2\\ n(CH_3COOH)_{Ve2\to Ve2}=2\ n\ (Ni(OH)_2)_{Ve1}=2\ n(Ni^{2+})_{0}=2\ C_2V_2 \end{array}$$


Soit
$$C(V_{e2} - V_{e1}) = 2 C_2 V_2 CV_{e2} = C_1 V_1$$

Résultats : $C(CH_3COOH) = 0.49 \text{ mol}L^{-1}$

3. courbe pH (V) (d'origine expérimentale)

Pour accéder aux valeurs de Ka et de K_S , il faudrait disposer des <u>valeurs</u> de certaines au moins des concentrations [CH₃COO], [CH₃COO $^{-}$], [Ni²⁺] ou [HO $^{-}$]: la mesure du pH l'aurait permis .

Voir les résultats expérimantaux ci-dessous

Détermination de pKa

En utilisant le bilan de matière ci-dessous , il apparaît que pour V=2 V_{e2} , on est en présence d'un mélange équimolaire de CH_3COO^- et de CH_3COOH : on a alors pH=pKa , soit $pKa \approx 4.8-4.9$

Détermination de pKs

Si on se place juste avant la disparition du précipité , on peut écrire $[Ni^{2+}]$ $[HO^{-}]^2 = Ks$ avec pH lu sur la courbe = 7,6 et $[Ni^{2+}] \approx C_2V_2/V_{tot} = 20*0,1/(80+14) = 0,02 \text{ molL}^{-1}$

D'où
$$K_S = 0.02 * 10^{-2*6.4} = 3.16.10^{-15}$$
 et **pKs = 14.5**

Valeur tabulée pKs = 15

Les quantités sont indiquées en moles

	V=0	$V < V_{e1}$	$V_{e1} = V$	$V_{e1} < V < V_{e2}$	V= V _{e2}	$V > V_{e2}$
Na ⁺	C_1V_1	C_1V_1	C_1V_1	C_1V_1	C_1V_1	C_1V_1
HO-	$C_1V_1 - 2 C_2V_2$	$(C_1V_1 - 2 C_2V_2) -$	-	-	-	-
		CV				
Ni ²⁺	-	-	-	$C(V-V_{e1})/2$	$C(V_{e2}-V_{e1})$	C_2V_2
					$/2 = C_2V_2$	
SO_4^{2-}	C_2V_2	C_2V_2	C_2V_2	C_2V_2	C_2V_2	C_2V_2
$Ni(HO)_{2(s)}$	C_2V_2	C_2V_2	$\mathbb{C}_2\mathbb{V}_2$	$\mathbb{C}_2\mathbb{V}_2$ - $\mathbb{C}(\mathbb{V}$ -	-	_
				V_{e1}) /2		