Exercice 1

Préliminaires:

Complexe: $M L_n$ et $n \ge 1$

La formation des complexes en solution aqueuse est associée à 2 types de constantes d'équilibre : les constante de formation successives K_{i} et constantes globales de formation β_{n}

$$M + L \rightleftharpoons ML_1 \quad Kf_1 = \beta_1$$

$$ML_1 + L \rightleftharpoons ML_2 \qquad K_{f2}$$
 et $M + 2L \rightleftarrows ML_2 \qquad \beta_2$

$$M + 2L \rightleftharpoons ML_2 \qquad \beta_2$$

......

$$ML_{n-1} + L \rightleftharpoons ML_n \quad K_{fn}$$
 et $M + nL \rightleftharpoons ML_n \quad \beta_n$

Relations entre ces constantes
$$\beta_n = \Pi K_{fi}$$
 $K_{fi} = \frac{\beta_i}{\beta_{i-1}}$

Autres grandeurs caractéristiques : les constantes de dissociation successives ou globale : Kdi = 1 / Kfi et $K_d = 1 / \beta_n$

1) « S'approprier-Analyser » : signification des courbes

$$\%$$
espèce =
$$\frac{[espèce]}{Somme\ des\ concentrations\ de\ toutes\ les\ espèces\ présentes}$$

Exemples:

$$%[F^{-}] = 100 \frac{[F^{-}]}{[F^{-}] + [Fe^{3+}] + [FeF^{2+}] + [FeF_{2}^{+}]}$$

$$\%[F^{-}] = 100 \frac{[F^{-}]}{[F^{-}] + [Fe^{3+}] + [FeF^{2+}] + [FeF^{2+}]}$$

$$\%[FeF^{2+}] = 100 \frac{[FeF^{2+}]}{[F^{-}] + [Fe^{3+}] + [FeF^{2+}] + [FeF^{2+}]}$$

Courbe 1 : l'espèce associée à cette courbe se trouve seule en solution lorsque pF est le plus faible , c'est-àdire lorsque la concentration en F est la plus importante : il ne peut s'agir que de F

Pour les autres courbes :

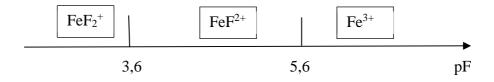
Lorsque pF= - log ([F-]) augmente la concentration en ions fluorure F- diminue : les espèces majoritaires doivent alors comporter de moins en moins de fluor.

courbe	1	2	3	4
espèce	F ⁻	FeF ₂ ⁺	FeF ²⁺	Fe ³⁺

2) Pour les complexes Fer-fluorure $n_{max} = 2 \Rightarrow 2$ constantes de formation successives

$$Fe^{3+} + F^- \rightleftarrows FeF^{2+}$$
, K_{f1}

$$pF = \log K_{f1} + \log \left(\frac{[Fe^{3+}]}{[FeF^{2+}]} \right)$$


$$pF = log K_{f2} + log \left(\frac{[FeF^{2+}]}{[FeF_2^{+}]}\right)$$

$$logKf_1 = pF$$
 pour $[Fe^{3+}] = [FeF^{2+}]$, soit à l'intersection des courbes 3 et 4

$$logK_{f1} = 5,6$$

$$logKf_2 = pF$$
 pour $[FeF_2^+] = [FeF^{2+}]$, soit à l'intersection des courbes 3 et 2 $logK_{f2} = 3,6$

①Bilan des espèces introduites :

$$Fe^{3+}$$
: $10*0,01 = 0,1 \text{ mmol } F: 1*0,3:0,3 \text{ mmole}$

2 Réactions possibles

$$Fe^{3+}+F- \rightarrow FeF^{2+} \quad K^{\circ}=K_{f1}=10^{5,6}$$
 : réaction quantitative $\downarrow \downarrow$

Nouveau système : $n(FeF^{2+}) = 0.1 \text{ mmol}$ et $n(F^{-}) = 0.3 - 0.1 = 0.2 \text{ mmol}$

Volume total V = 10 + 1 mL

$$[FeF^{2+}] = 9,1.10^{-3} \text{ mol}L^{-1}$$
 et $[F^{-}] = 1,8.10^{-2} \text{ mol}L^{-1}$

Remarque si on fait l'approximation $V \approx 10 \text{ mL}$ (ce qui revient à négliger la dilution lors de l'introduction de 1 mL de NaF) : $[\text{FeF}^{2+}] = 1,0.10^{-2} \text{ molL}^{-1}$ et $[\text{F}^{-}] = 2.10^{-2} \text{ molL}^{-1}$

Ce nouveau système peut à nouveau évoluer selon :

$$FeF^{2+} + F^{-} \rightarrow FeF_{2}^{+} \quad K^{\circ} = K_{f2} = 10^{3.6}$$

Valeur de K° et F_{-} introduit en excès : réaction quantitative

Nouveau système $n(FeF_2^+) = 0.1 \text{ mmol}$ et $n(F^-) = 0.2 - 0.1 = 0.1 \text{ mmol}$ $[FeF_2^+] = 9.1.10^{-3} \text{ mol}L^{-1}$ et $[F^-] = 9.1.10^{-3} \text{ mol}L^{-1}$

A partir de ce dernier système (FeF_2^+ et F^-) : pas de réaction possible entre ces deux espèces , éventuellement les réactions de dissociation (inverses des réactions de formation) mais elles sont tres peu déplacées .

Conclusion:

dans l'état final le système est constitué de FeF_{2}^{+} et de F^{-} avec $[FeF_{2}^{+}] = 9,1.10^{-3} \text{ molL}^{-1}$ et $[F^{-}] = 9,1.10^{-3} \text{ molL}^{-1}$ (ou $[FeF_{2}^{+}] = 10^{-2} \text{ molL}^{-1}$ et $[F^{-}] = 10^{-2} \text{ molL}^{-1}$ si on néglige la dilution)

Le jour du concours : pour gagner du temps, on écrira directement :

Bilan des espèces introduites :

$$Fe^{3+}$$
: $10*0.01 = 0.1 \text{ mmol } F^-: 1*0.3:0.3 \text{ mmole}$

On observe que l'ion F est introduit en large excès d'où la composition finale du système :

$$n(FeF_2^+) = 0.1 \text{ mmol}$$
 et $n(F^-) = 0.3 - 2*0.1 = 0.1 \text{ mmol}$

Ceci est possible car les 2 réactions sont quantitatives

Remarque : En utilisant K_{f2} et K_{f1} on peut déterminer les concentrations des autres espèces :

Kennarque: En utilisant
$$K_{f2}$$
 et K_{f1} on peut determiner les concer $K_{f2} = \frac{[FeF_2^+]}{[FeF^2^+][F^-]} \Rightarrow [FeF^2^+] = \frac{9,1.10^{-3}}{10^{3,6}*0,01} = 2,3.10^{-4} mol L^{-1}$

$$K_{f1} = \frac{[FeF^2^+]}{[Fe^3^+][F^-]} \Rightarrow [Fe^3^+] = \frac{2,3.10^{-4}}{10^{5,6}*0,01} = 5,8.10^{-8} mol L^{-1}$$

(Ces valeurs permettent éventuellement de valider l'hypothèse d'absence d'évolution ..si c'est demandé)

Corrélation avec le graphe fourni

$$[F^-] = 9,1.10^{-3} \text{ mol} L^{-1} \Rightarrow pF = -\log(9,1.10^{-3}) = 2,04$$

On se place sur le graphe à l'abscisse pF = 2,0: on constate que les espèces présentes sont celles associées aux courbes 1 et 2, c'est-à-dire F et FeF_2 +