Exercice 6

$$AsH_{3(g)} = As_{(s)} + \frac{3}{2}H_{2(g)}$$

La réponse à la question suppose de connaître l'expression de la pression totale en fonction du temps. Cf exercice 2

•Expression de la pression partielle de l'arsine en fonction du temps .

réaction supposée d'ordre 1 : $v = k [AsH_3]$

Par définition : $v = -\frac{d[AsH_3]}{dt}$

Par identification on en déduit <u>l'équation différentielle</u> : $-\frac{d[AsH_3]}{dt} = k[AsH_3]$

Par intégration on obtient : $[AsH_3] = [AsH_3]_0 \exp(-kt)$ soit $n(AsH_3) / V = n_0(AsH_3) / V \exp(-kt)$

Ainsi, en nombre de moles $n(AsH_3) = n_0(AsH_3) \exp(-kt)$

D'autre part la pression partielle vérifie P (AsH₃) V = n (AsH₃) RT

Initialement le seul gaz present est l'arsine donc P_0 $V = n_0$ (AsH₃) RT

Par conséquent $P(AsH_3) = P_0 exp(-kt)$

■ Expression de la pression totale , relation entre pression totale et pression partielle en arsine

bilan de matière en fonction de ξ , l'avancement de réaction :

	AsH ₃	$As_{(s)}$	3/2 H _{2(g)}	n _{tot gaz}
t=0	n_0	-	-	n_0
t	n ₀ - ξ	ξ	3ξ /2	$n_0 + \xi/2$

On en déduit

$$P_0 V = n_0 RT$$

$$P(AsH_3) = (n_0 - \xi) RT \implies \frac{P(AsH_3)}{P_0} = \frac{n_0 - \xi}{n_0} \implies 1 - \frac{P(AsH_3)}{P_0} = \frac{\xi}{n_0}$$

Pour la pression totale :

$$PV = \left(n_0 + \frac{\xi}{2}\right)RT \implies \frac{P}{P_0} = \frac{n_0 + \frac{\xi}{2}}{n_0} = 1 + \frac{\xi}{2n_0} \frac{P}{P_0} = 1 + \frac{1}{2}\left(1 - \frac{P(AsH_3)}{P_0}\right)$$

$$P = \frac{3P_0}{2} - \frac{P(AsH_3)}{2} \qquad \text{finalement} \quad P = P_0 \left[\frac{3}{2} - \frac{exp(-kt)}{2}\right]$$

Vérification expérimentale

L'expression précédente est équivalente à $Ln\left(\frac{3P_0-2P}{P_0}\right) = -kt$.

Pour vérifier l'ordre 1 , on vérifie que les variations de $Ln\left(\frac{3P_0-2P}{P_0}\right)$ en fonction du temps sont

représentées par une droite.

Le coefficient directeur de cette droite s'identifie à – k.