

YCLE

MODELISATION DES CHAINES DE SOLIDES

TD 1 - PSI

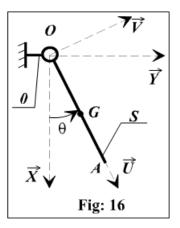
CHAPITRE 2 CINETIQUE

1 EXERCICE 1: PENDULE SIMPLE

Soit un pendule OA de longueur I, de masse m, de centre de gravité G, en liaison pivot d'axe (O, \overline{Z}) .

a/ Déterminer le torseur cinétique en O de (S) dans son mouvement par rapport au repère $R = (O, \overrightarrow{X}, \overrightarrow{Y}, \overrightarrow{Z})$.

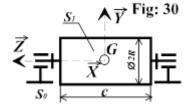
b/ Déterminer le torseur dynamique en O de (S) dans son mouvement par rapport au repère $R = (O, \overrightarrow{X}, \overrightarrow{Y}, \overrightarrow{Z})$.



2 EXERCICE 2: ROTOR DE MOTEUR ELECTRIQUE

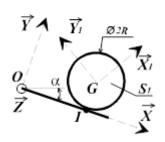
Un cylindre plein (S_1) de masse m, de rayon R, tourne autour de son axe (G, \overline{Z}) ,

G étant le centre de gravité de l'ensemble mobile. On pose $\Omega I/0 = \dot{\theta} Z$. Déterminer les torseurs cinétique et dynamique de (S_I) en G dans son mouvement par rapport à (S_0) .



3 EXERCICE 3 : MOUVEMENT D'UN ROULEAU SUR UN PLAN:

Soit un repère $R = (O, \overrightarrow{X}, \overrightarrow{Y}, \overrightarrow{Z})$. Un solide de révolution (S_I) de rayon R, de masse m roule sans glisser sur le plan $(O, \overrightarrow{X}, \overrightarrow{Z})$. Soit $R_I = (G, \overrightarrow{X_I}, \overrightarrow{Y_I}, \overrightarrow{Z_I})$ un repère lié à (S_I) , l'axe $(G, \overrightarrow{Z_I})$ du cylindre restant constamment parallèle à



 $(0, \overrightarrow{Z})$. $(0, \overrightarrow{X})$ est la ligne de plus grande pente du plan incliné. La matrice d'inertie de (SI) dans le

repère
$$R_I$$
 est donnée $\left(I_G(S_I)\right)_{R_I} = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}$ avec $C = \frac{mR^2}{2}$

On définit par (x,y) les coordonnées de G dans le repère R, la position de R_I par rapport à R est définie par $\theta = (\overrightarrow{X}, \overrightarrow{X}_I)$.

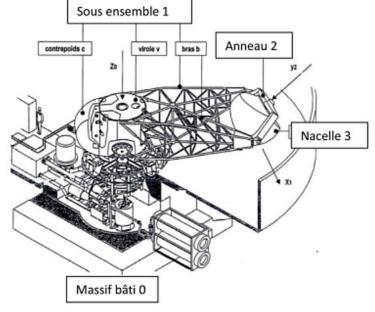
- a/ Déterminer la relation entre \dot{x} et $\dot{\theta}$.
- b/ Déterminer le torseur cinétique en G de (S_I) dans son mouvement par rapport au repère R.
- c/ Déterminer le torseur cinétique en I de (S_I) dans son mouvement par rapport au repère R.
- $\mathbf{d}/$ Déterminer le torseur dynamique en \mathbf{I} de (S_I) dans son mouvement par rapport au repère \mathbf{R} .

4 EXERCICE 4 : CENTRIFUGEUSE HUMAINE

On s'intéresse à une centrifugeuse humaine dont on donne une description structurelle ainsi que la modélisation cinématique. Le système étudié est constitué de 4 éléments principaux :

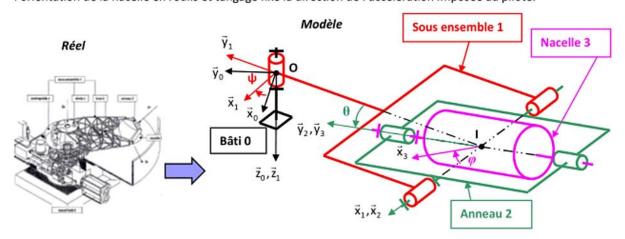
- un massif-bâti en béton 0 sur lequel est rigidement ancré un axe assurant le guidage en rotation du sous ensemble 1 autour d'un axe vertical,
- un sous ensemble 1 en rotation autour de l'axe vertical qui est composé d'un contrepoids c, d'une virole v et d'un bras en treillis tubulaire b,
- un anneau 2, interposé entre la nacelle et le bras, autorisant les rotations autour des 2 axes orthogonaux (roulis et tangage),
- une nacelle instrumentée 3 équipée du siège pour le pilote.

Aux 4 éléments précédents s'ajoutent des équipements complémentaires comme :



- un générateur de puissance hydraulique,
- un réducteur pouvant transmettre une puissance de l'ordre de 1MW pour le mouvement de rotation du sous ensemble 1 par rapport à 0,
- une motorisation embarquée pour les mouvements de rotation de roulis et de tangage,
- un système d'asservissement pour chaque actionneur.

Cette conception permet de lier de façon univoque, les profils de position (ou de vitesse relative) engendrés au niveau de chaque liaison à l'évolution temporelle des 3 composantes d'accélération que subit le pilote. Ainsi les consignes de position ou de vitesse à appliquer aux liaisons sont directement déduites de l'accélération à reproduire. La vitesse de rotation du bras détermine l'intensité de l'accélération imposée au pilote et l'orientation de la nacelle en roulis et tangage fixe la direction de l'accélération imposée au pilote.



Modélisation cinématique et paramétrage :

Sur le modèle on considère que :

- le repère $\Re_{o} = (O, \vec{x}_{0}, \vec{y}_{0}, \vec{z}_{0})$ est lié au bâti 0, ce repère sera considéré comme galiléen. Le champ de la pesanteur est définit par $\vec{g} = +g \vec{z}_0$,
- le repère $\Re_1 = (0, \vec{x}_1, \vec{y}_1, \vec{z}_0)$ est lié au sous ensemble 1 (composée du contrepoids c, de la virole v et du bras en treillis tubulaire b). La liaison 1/0 est considérée comme une liaison pivot parfaite d'axe (O, \vec{z}_0) , sa position est paramétrée par l'angle $\psi(t) = (\vec{x}_0, \vec{x}_1)$,
- parfaite d'axe (I,\vec{x}_1) , sa position est paramétrée par l'angle $\theta(t) = (\vec{y}_1,\vec{y}_2)$, θ est appelé angle de roulis,
- le repère $\mathcal{R}_3 = (\mathbf{I}, \vec{\mathbf{x}}_3, \vec{\mathbf{y}}_2, \vec{\mathbf{z}}_3)$ est lié à la nacelle 3 dans laquelle prend place le pilote. La liaison 3/2 est considérée comme une liaison pivot parfaite d'axe (I, y2) sa position est paramétrée par l'angle $\varphi(t) = (\vec{x}_2, \vec{x}_3)$

Données massiques :

Sous ensemble (1): Masse m_1 , centre de gravité G_1 tel que $OG_1 = a \vec{y}_1$

Matrice d'inertie
$$i_{G_1}(1) = \begin{bmatrix} A_1 & -F_1 & -E_1 \\ -F_1 & B_1 & -D_1 \\ -E_1 & -D_1 & C_1 \end{bmatrix}_{(G_1, \vec{x}_1, \vec{y}_1, \vec{z}_1)}$$

Le plan $(O, \vec{y}_1, \vec{z}_1)$ est un plan de symétrie pour le sous ensemble 1.

Anneau (2): Masse m_2 , centre de gravité I tel que $OI = -R \vec{y}_1$

Anneau (2): Masse
$$m_2$$
, centre de gravite i tel que OI =
$$\begin{bmatrix} A_2 & -F_2 & -E_2 \\ -F_2 & B_2 & -D_2 \\ -E_2 & -D_2 & C_2 \end{bmatrix}_{\{I, \vec{x}_2, \vec{y}_2, \vec{z}_2\}}$$

Les plans $(I, \vec{x}_2, \vec{y}_2)$ et $(I, \vec{y}_2, \vec{z}_2)$ sont des plans de symétrie pour le solide 2.

Nacelle et pilote (3): Masse m3, le centre de gravité reste confondu avec le point I

Matrice d'inertie
$$i_1(3) = \begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}_{(I,\vec{x}_3,\vec{y}_2,\vec{z}_3)} = \begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}_{(I,\vec{x}_2,\vec{y}_2,\vec{z}_2)}$$

- Q.1. En tenant compte des données du problème, définir la forme simplifiée de la matrice d'inertie du sous ensemble 1 en G₁ dans la base 1.
- **Q.2.** Déterminer le torseur cinétique de 1/0 au point O du sous ensemble 1 dans son mouvement par rapport à 0
- Q.3. En tenant compte des données du problème, définir la forme simplifiée de la matrice d'inertie de l'anneau 2 en I dans la base 2.
- Q.4. Déterminer le torseur cinétique de 2/0 au point I du solide 2 dans son mouvement par rapport à 0.
- Q.5. Déterminer le torseur cinétique de 3/0 au point I du solide 3 dans son mouvement par rapport à 0.
- Q.6. En déduire le torseur cinétique de l'ensemble E₁=2+3 au point I dans son mouvement par rapport à 0.
- Q.7. Déterminer le torseur dynamique de 1/0 au point O du sous ensemble 1 dans son mouvement par rapport au repère 0.
- Q.8. Proposer sous forme d'organigramme les différentes étapes de calcul afin de déterminer le moment dynamique au point O $\overrightarrow{\delta_{OE,/O}}$ de l'ensemble E_2 =1+2+3 dans son mouvement par rapport à 0.

5 REPONSES:

1.a/
$$R_{c}(\overrightarrow{S/R}) = \frac{m.l}{2}\dot{\theta}\overrightarrow{V}$$
; $\sigma_{o}(\overrightarrow{S/R}) = \frac{m.l^{2}}{3}\dot{\theta}\overrightarrow{Z}$
b/ $R_{o}(\overrightarrow{S/R}) = \frac{m.l}{2}\ddot{\theta}\overrightarrow{V} - \frac{m.l}{2}\dot{\theta}^{2}\overrightarrow{U}$; $\delta_{o}(\overrightarrow{S/R}) = \frac{m.l^{2}}{3}\ddot{\theta}\overrightarrow{Z}$

$$2/R_{c}(\overrightarrow{S/R_{\theta}}) = \overrightarrow{\theta} \quad ; \quad \sigma_{c}(\overrightarrow{S/R_{\theta}}) = C\dot{\theta} \overrightarrow{Z}$$

$$R_{D}(\overrightarrow{S/R_{\theta}}) = \overrightarrow{\theta} \quad ; \quad \delta_{c}(\overrightarrow{S/R_{\theta}}) = C\ddot{\theta} \overrightarrow{Z}$$
et $\overrightarrow{V} = \overrightarrow{Z_{\theta} \wedge \mu}$

3.a/
$$\dot{x} = -R\dot{\theta}$$

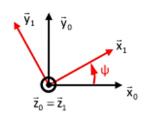
b/ $R_c(\overrightarrow{S_1/R}) = m\dot{x}\overrightarrow{X}$; $\sigma_c(\overrightarrow{S_1/R}) = C\dot{\theta}\overrightarrow{Z}$

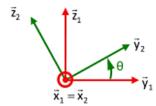
$$C/R_c(\overrightarrow{S_I/R}) = m\dot{x}\overrightarrow{X}$$
; $\sigma_l(\overrightarrow{S_I/R}) = \dot{\theta}(C + mR^2)\overrightarrow{Z}$

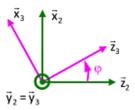
$$d/R_D(\overrightarrow{S_1/R}) = m\ddot{x} \overrightarrow{X} ; \delta_I(\overrightarrow{S_1/R}) = \ddot{\theta}(C + mR^2) \overrightarrow{Z}$$

Exercice 4: Centrifugeuse Humaine

Figures géométrales :







Q.1. Le plan $(O, \vec{y}_1, \vec{z}_1)$ est un plan de symétrie pour le sous ensemble $1 \rightarrow (O, \vec{x}_1)$ axe principal d'inertie \rightarrow

$$\dot{I}_{G_1}(1) = \begin{bmatrix} A_1 & 0 & 0 \\ 0 & B_1 & -D_1 \\ 0 & -D_1 & C_1 \end{bmatrix}_{(G_1, \vec{X}_1, \vec{Y}_1, \vec{Z}_1)}$$

Q.2. 1/0 : Mouvement de rotation autour d'un axe fixe + matrice d'inertie donnée en G1 (centre de gravité) :

$$\overrightarrow{R_{C\ 1/0}} = m_1.\overrightarrow{V_{G_1,1/0}} = -m_1.a.\dot{\psi}.\vec{x}_1$$

$$\overrightarrow{\sigma_{\mathsf{G}_{1},\;1/0}} = \mathsf{I}_{\mathsf{G}_{1}}(\mathsf{S}_{1}).\overrightarrow{\Omega_{1/0}} = \begin{bmatrix} \mathsf{A}_{1} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{B}_{1} & -\mathsf{D}_{1} \\ \mathsf{0} & -\mathsf{D}_{1} & \mathsf{C}_{1} \end{bmatrix} (\mathsf{G}_{1},\vec{\mathsf{X}}_{1},\vec{\mathsf{Y}}_{1},\vec{\mathsf{Z}}_{1})$$

On déplace le moment cinétique en O : $\overline{\sigma_{\text{O}, \ 1/0}} = \overline{\sigma_{\text{G}_1, \ 1/0}} + \overline{\text{OG}_1} \wedge \overline{\text{R}_{\text{C} \ 1/0}} = \overline{\sigma_{\text{G}_1, \ 1/0}} + \text{a.} \vec{y}_1 \wedge -\text{m}_1.\text{a.} \dot{\psi}.\vec{x}_1$

$$\overrightarrow{\sigma_{0_1,1/0}} = -D_1.\dot{\psi}.\vec{y}_1 + C_1.\dot{\psi}.\vec{z}_1 + m_1.a^2.\dot{\psi}.\vec{z}_1$$

$$\left\{ \mathcal{C}_{1/0} \right\} = \begin{cases} -m_1.a.\dot{\psi}.\vec{x}_1 \\ -D_1.\dot{\psi}.\vec{y}_1 + (C_1 + m_1.a^2)\dot{\psi}.\vec{z}_1 \end{cases}$$

Q.3. Les plans $(l, \vec{x}_2, \vec{y}_2)$ et $(l, \vec{y}_2, \vec{z}_2)$ sont des plans de symétrie pour le solide $2 \rightarrow la$ matrice est diagonale \rightarrow

$$\hat{I}_{1}(2) = \begin{bmatrix} A_{2} & 0 & 0 \\ 0 & B_{2} & 0 \\ 0 & 0 & C_{2} \end{bmatrix}_{\{I_{1},\vec{X}_{2},\vec{Y}_{2},\vec{Z}_{2}\}}$$

Q.4. 2/0 : Mouvement quelconque + matrice d'inertie donnée en I (centre de gravité) :

$$\left\{\mathscr{C}_{2/0}\right\} = \left\{ \begin{aligned} \overline{R_{C\ 2/0}} &= m_2.\overline{V_{I,2/0}} \\ \overline{\sigma_{I,2/0}} &= I_I(S_2).\overline{\Omega_{2/0}} \end{aligned} \right\} \text{ avec}:$$

$$\overrightarrow{R_{C_{2/0}}} = m_2 \cdot \overrightarrow{V_{L_{2/0}}} = m_2 \cdot R \cdot \dot{\psi} \cdot \vec{x}_1$$

$$\overrightarrow{\sigma_{1,2/0}} = I_1(S_2).\overrightarrow{\Omega_{2/0}} = \begin{bmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{bmatrix}_{(I_1,\overrightarrow{X}_2,\overrightarrow{V}_2,\overrightarrow{Z}_2)} .(\dot{\psi}.\sin\theta.\vec{y}_2 + \dot{\psi}.\cos\theta.\vec{z}_2 + \dot{\theta}.\vec{x}_2)$$

$$\overline{\sigma_{1,2/0}} = A_2.\dot{\theta}.\vec{x}_2 + B_2.\dot{\psi}.\sin\theta.\vec{y}_2 + C_2.\dot{\psi}.\cos\theta.\vec{z}_2$$

$$\left\{\mathcal{C}_{2/0}\right\} = \left\{\begin{matrix} \mathbf{m}_2.\mathbf{R}.\dot{\boldsymbol{\psi}}.\ddot{\mathbf{x}}_1\\ \mathbf{A}_2.\dot{\boldsymbol{\theta}}.\ddot{\mathbf{x}}_2 + \mathbf{B}_2.\dot{\boldsymbol{\psi}}.\sin\theta.\ddot{\mathbf{y}}_2 + \mathbf{C}_2.\dot{\boldsymbol{\psi}}.\cos\theta.\ddot{\mathbf{z}}_2 \end{matrix}\right\}$$

Q.5. 3/0 : Mouvement quelconque + matrice d'inertie donnée en I (centre de gravité) :

$$\left\{\mathscr{C}_{3/0}\right\} = \left\{ \overline{R_{c \ 3/0}} = m_3.\overline{V_{l,3/0}} \atop \overline{\sigma_{l,3/0}} = l_l(S_3).\overline{\Omega_{3/0}} \right\} \text{ avec}:$$

$$\overrightarrow{R_{C 3/0}} = m_3.\overrightarrow{V_{I,3/0}} = m_3.R.\dot{\psi}.\overrightarrow{x}_1$$

$$\overrightarrow{\sigma_{\text{I, 3/0}}} = \text{I}_{\text{I}}(S_3).\overrightarrow{\Omega_{3/0}} = \begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}_{\text{(I, \vec{X}_2, \vec{Y}_2, \vec{Z}_2)}} .((\dot{\psi}.\sin\theta + \dot{\phi}).\vec{y}_2 + \dot{\psi}.\cos\theta.\vec{z}_2 + \dot{\theta}.\vec{x}_2)$$

$$\overrightarrow{\sigma_{1,3/0}} = A_3 \cdot \dot{\theta} \cdot \vec{x}_2 + B_3 \cdot (\dot{\psi} \cdot \sin \theta + \dot{\phi}) \cdot \vec{y}_2 + C_3 \cdot \dot{\psi} \cdot \cos \theta \cdot \vec{z}_2$$

$$\left\{\mathcal{C}_{3/0}\right\} = \left\{\begin{matrix} \mathbf{m}_3.\mathbf{R}.\dot{\boldsymbol{\psi}}.\vec{\mathbf{x}}_1\\ \mathbf{A}_3.\dot{\boldsymbol{\theta}}.\vec{\mathbf{x}}_2 + \mathbf{B}_3.(\dot{\boldsymbol{\psi}}.\sin\boldsymbol{\theta} + \dot{\boldsymbol{\phi}}).\vec{\mathbf{y}}_2 + \mathbf{C}_3.\dot{\boldsymbol{\psi}}.\cos\boldsymbol{\theta}.\vec{\mathbf{z}}_2\end{matrix}\right\}$$

$$\begin{aligned} &\textbf{Q.6.} \ \, \text{Au point I on a} : \ \left\{ \mathcal{C}_{\text{E}_{1/0}} \right\} = \left\{ \mathcal{C}_{2/0} \right\} + \left\{ \mathcal{C}_{3/0} \right\} \ \, \text{avec} : \\ &\left\{ \mathcal{C}_{3/0} \right\} = \left\{ \begin{matrix} m_3.\text{R.}\dot{\psi}.\vec{x}_1 \\ A_3.\dot{\theta}.\vec{x}_2 + B_3.(\dot{\psi}.\sin\theta + \dot{\phi}).\vec{y}_2 + C_3.\dot{\psi}.\cos\theta.\vec{z}_2 \end{matrix} \right\} \ \, \text{et} \\ &\left\{ \mathcal{C}_{2/0} \right\} = \left\{ \begin{matrix} m_2.\text{R.}\dot{\psi}.\vec{x}_1 \\ A_2.\dot{\theta}.\vec{x}_2 + B_2.\dot{\psi}.\sin\theta.\vec{y}_2 + C_2.\dot{\psi}.\cos\theta.\vec{z}_2 \end{matrix} \right\} \end{aligned}$$

Q.7.
$$\{\mathcal{D}_{1/0}\} = \left\{ \overline{R_{d \ 1/0}} = m_1.\overline{\Gamma_{G_1,1/0}} \right\}$$

Avec
$$\overrightarrow{R_{d\ 1/0}} = -m_1.a.\ddot{\psi}.\vec{x}_1 - m_1.a.\dot{\psi}^2.\vec{y}_1$$

O point fixe de 0 :
$$\overrightarrow{\delta_{0,1/0}} = \frac{d}{dt} \overrightarrow{\sigma_{0,1/0}} \Big|_{0} = -D_{1}.\ddot{\psi}.\ddot{y}_{1} + D_{1}.\dot{\psi}^{2}.\ddot{x}_{1} + (C_{1} + m_{1}.a^{2})\ddot{\psi}.\ddot{z}_{1}$$

$$\left\{ \mathcal{D}_{1/0} \right\} = \begin{cases} -m_{1}.a.\ddot{\psi}.\ddot{x}_{1} - m_{1}.a.\dot{\psi}^{2}.\ddot{y}_{1} \\ -D_{1}.\ddot{\psi}.\ddot{y}_{1} + D_{1}.\dot{\psi}^{2}.\ddot{x}_{1} + (C_{1} + m_{1}.a^{2})\ddot{\psi}.\ddot{z}_{1} \end{cases}$$

Q.8. On décompose en sous système élémentaires :

