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Chapitre 1

Dénombrabilité et Sommabilité

1.1 Ensembles dénombrables

1.1.1 Equipotence

‘Déﬁnition 1 Deuzx ensembles sont équipotents s’il existe une bijection de l'un sur l’autre.

[ sont équipotents via arctan.

Exemple 1 R et ] — g,

po|

‘Remarque 1 Sur la classe des ensembles, la relation d’équipotence est une relation d’équivalence ‘

1.1.2 Ensembles dénombrables

‘Déﬁnition 2 Un ensemble est dénombrable s’il est équipotent a N ‘

‘Remarque 2 Un ensemble dénombrable est donc infini. ‘

‘Déﬁnition 3 Un ensemble est au plus dénombrable s’il est fini ou dénombrable. ‘

‘Remarque 3 Ces deuxr notions sont invariantes par équipotence. ‘

‘Exemple 2 N*, Z et N? sont dénombrables. ‘

1.1.3 Opérations sur les ensembles dénombrables

Théoréme 1 La réunion d’une famille dénombrable (donc finie a fortiori) d’ensembles dénombrables est
dénombrable.
Le produit cartésien d’ensembles dénombrables est dénombrable.

1.1.4 Enumeration

Proposition 1 Soit A un ensemble. Il y a équivalence entre les assertions :

i) A est dénombrable.

A ={zx,,n € N}

n#m=— T, # Tn

Dans ce cas la suite (xy,) (que l'on peut noter n — x,) est une énumération de A.

it) Il existe une suite (x,,) telle que :

Corollaire 1 Toute partie d’un ensemble dénombrable est au plus dénombrable.
Toute partie infinie d’un ensemble dénombrable est dénombrable.

Toute partie infinie qui s’injecte dans un ensemble dénombrable est dénombrable.
(De cette derniére propriété et de l'exemple 2, on déduit que Q est dénombrable).

Enfin et a titre culturel :

Corollaire 2 R n’est pas dénombrable.




1.2 Familles sommables

1.2.1 Permutations

Définition 4 Soit A un ensemble, on appelle permutation de A toute bijection de A sur lui-méme.

Remarque 4 Si A est dénombrable dont une énumération est (x,,) alors TOUTE énumération de A reléve
du type (To(n)), 0 « est une permutation de N.

1.2.2 Convergence commutative

Définition 5 Une série convergente da termes compleres Yu, est dite commutativement convergente

(0.0} o0
st, pour toute permutation de N o, Zua(n) est encore convergente et si Z Ug(n) = Z Up, -
n=0 n=0

Autrement dit une série est commutativement convergente si une permutation de ’ordre de ses termes ne
modifie ni sa convergence ni la somme de cette série.

‘Proposition 2 Toute série a termes positifs convergente est commutativement convergente.

De facon plus générale et en reprenant les arguments utilisés dans la démonstration du fait qu’une série
ACV est convergente, on prouve (et on admet conformément au programme) que :

Théoréme 2 (Fondamental)
Une série absolument convergente (a termes complexes) est commutativement convergente.

Remarque 5 [l s’agit en fait d’une caractérisation des séries commutativement convergentes.
Voici ce qui peut se passer pour une série semi-convergente comme la série harmonique alternée.

o0 -1 n—1

On sait que Z i = In(2) donc si la série harmonique alternée était commutativement convergente
n

n=1

on aurait, en réarrangeant ses termes, In(2) =1—-1/2—-1/44+1/3-1/6—-1/84+1/5—-1/10—-1/12+ ....; ce
—— ——— —_———
In(2

qui donnerait In(2) = né ) !

Désormais les ensembles d’indices manipulés sont dénombrables ou, le contexte faisant foi, au plus dénombrables

1.2.3 Familles sommables de réels positifs

Une famille est une généralisation de la notion de suite en prenant des ensembles d’indices plus généraux
que I'ensemble des entiers naturels.

On se donne un ensemble d’indices I dénombrable (le cas fini ne soulevant aucune difficulté) ainsi qu’une
famille de réels positifs indéxée par I et que 'on notera (z;);er (et plus légérement (z;) s’il n’y a pas d’am-
biguité). Noter donc que : Vi € I, z; > 0.

Définition 6 La famille (x;);c; est dite sommable s’il existe une énumération n — i, de I pour laquelle

la série a termes positifs Z x;, soit convergente (c’est alors le cas par convergence commutative pour toute
n>0

énumération de I ).

Dans ce cas la somme de cette série convergente est la somme de la famille (x;);cr et se note Zazl

On notera la cohérence de cette définition puisque la somme de la série convergente utilisée néefiépend que

de I et non de telle ou telle énumération.

Définition 7 Eztension de la définition de la somme d’une famille de réels positifs.
Si la famille de réels positifs (z;);er n'est pas sommable, on pose le = +o0
el
Ainsi a toute famille dénombrable (et méme au plus dénombrable) de réels positifs on associe sa somme qui
est un élément de [0, +00].




1.2.4 Sommabilité d’une famille au plus dénombrables de nombres complexes

I est un ensemble au plus dénombrable et, pour tout ¢ € I, x; € C. Nous étendons la définition de la
sommabilité de la fagon suivante :

Définition 8 La famille (z;);cs est dite sommable si I est fini ou ,lorsque I est dénombrable, si la famille
de réels positifs (|z;|)icr est sommable au sens de la définition 6.

Dans ce cas la somme de cette famille, toujours notée sz est la somme usuelle dans le cas fini et, lorsque

el
I est dénombrable, il s’agit de la somme de la série absolument convergente ( donc convergente) Z X, , Ol
n>0

n — i, est une énumération de I (la convergence commutative d’une série ACV nous assure bien que ce
nombre ne dépend pas de l’énumération utilisée).

Notations 1 Pour signifier que (x;)ic; est sommable, on écrira (notation d savoir expliquer le cas
échéant)(z;)ier € €1(I).

Exemple 3 Sil =N, la sommabilité de la famille (ou suite ici) de complezes (xy,) équivaut d la convergence
absolue de la série Z Ty converge et, dans ce cas, sa somme est celle de cette série.
n>0
Autrement dit (x,)nen € £H(N) < Z xyn converge absolument. (Cas des familles de réels positifs a inclure).
n>0

1.2.5 Premieéres propriétés des familles sommables

On se donne 1,J au plus dénombrables ainsi que (z;)ier,(yi)ier des familles de nombres complexes.
Nous listons maintenant des propriétés des sommes de familles sommables qui généralisent les plus simples
des sommes usuelles ( i.e finies).

Proposition 3 Si (x;)icr sommable et si J C I, alors (z;)ic; sommable.

Exercice 1 On note I l’ensemble des rationnels supérieurs d 1.
Etablir que la famille (i~2);er n’est pa sommable. (Considérer la sous-famille (x, = 14+1/n)pen+ évidemment
non sommable)

Proposition 4 (Domination)
Si (yi)ier € EI(I) et si, pour tout i € I, |x;| < |y;| alors (x;)icr € 61(1).

Par définition :

Proposition 5 a)Soient (x;);c; sommable et o une permutation de I :
la famille (z,(;))icr est sommable et Zazg(i) = Zacz

iel iel
b) (zi)ier € £'(I) <= (|zil)ier € £'(I).

Proposition 6 ( Linéarité de la somme )
Si (x;)icr et (yi)ier sont dans £*(I) alors, pour tout X\ € C, (x; + \y;)icr € £1(I) et

Z(ﬂfz + Ayi) = le —|—)\Zyi.

iel iel icl

‘Corollaire 3 (z:)ier € £1(I) <= (Re(x:))ier € £*(I) et (Im(x;))ier € €1(I)

Proposition 7 ( Croissance de la somme )

Si (x;)ier et (yi)ier sont des familles de réels sommables et si , pour tout i € I, x; < y;, alors Z z; < Zyi.
icl il

St les familles sont a termes positifs, qu’il y ait sommabilité ou pas, ’inégalité :

Zmi < Zyl reste valable et peut prouver la sommabilité ou la non sommabilité d’une famille.

i€l el

(La finitude de la somme majorante donne la sommabilité de la famille (x;);cr et par contraposition....)

Corollaire 4 (Inégalité triangulaire)

Qu’il y ait sommabilité ou pas : Y |z +yil <D |zl + > |wil-
i€l i€l i€l




1.2.6 Sommation par paquets

Cette technique généralise la relation de Chasles.

Définition 9 Soient I, J ensembles au plus dénombrables, on appelle découpage ( ou partage) de I toute
famille (I;)jey de parties de I telle que :
i) Les I; sont deux d deux disjoints.

i) | JI=1.

JjeJ

Voila maintenant le résultat principal de cette sous-section.

Théoréme 3 ( Sommation par paquets)

Soient (I;)jes un découpage de I ensemble au plus dénombrable et (x;)icr une famille de nombres complexes
sommable.

i) Pour chaque j € J, (x;)ici; est sommable , en posant S; = Z xi, la famille (S;); est sommable.

1€l
il jeJ JET i€l
Noter enfin que si (x;);cr est une famille de réels positifs, ’égalité précédente est toujours vraie ( qu’il y
ait ou non sommabilité) et en cas de finitude du membre de droite, elle donne la sommabilité de la famille

(z:)icr-

Un découpage fini et naturel de Z étant (N, Z* ), on a (puisque, on le rappelle, la sommabilité d’une famille
indéxée par N se résume a sa convergence absolue) :

Corollaire 5 (Cas d’une famille indéxée par Z)

Soit (zp)nez une famille de nombres complezxes.

Les assertions suivantes sont équivalentes :

i) (n)nez est sommable.

it) Les séries Z T, et Z T_p, sont absolument convergentes.

n>0 n>1
o [o.¢]
Dans ce cadre Z B = Z Ty + Z By
neL n=0 =l

Exercice 2 Soit ¢ un nombre complexe de module strictement inférieur a 1.

4 < . 14
Etablir que la famille (¢™)nez est sommable et préciser sa somme (on doit trouver ; q).

1.2.7 Sommes doubles et principe de Fubini

I et J sont des ensembles au plus dénombrables et (; ;) j)erxs désigne une famille de nombres complexes.
La technique qui suit est une conséquence de la sommation par paquets.

Théoréme 4 ( Principe de Fubini)
a) On suppose que la famille (x; ) jyerx.s est sommable : alors
i) Pour tout i € I, la famille (z;)jcs est sommable, de somme S; et la famille (S;)icr est sommable.
i) Pour tout j € J, la famille (x;;)icr est sommable, de somme Tj et la famille (T});cs est sommable.
Dans ce cas (Fubini) on a : Z h = Z(Z G ) = Z(Z T4 1)
(4,9)€IxJ el jeJ jeJ iel
Si (z5)jes est une famille de réels positifs, les égalités précédentes sont vraies qu’il y ait sommabilité ou
non et, en cas de finitude ont valeur de preuve de sommabilité.

Il vient immédiatement (cf le cas famille a termes positifs et proposition 5 b)) que :

Corollaire 6 Si Pour tout i € I, la famille (x;)jcj est sommable et si la famille (Z |z(.5)|) Uest aussi
jeJ

alors la famille (z; ;)@ jyerxs est sommable et on peut appliquer le principe de Fubini pour en calculer la

somme (Méme chose en échangeant les réles de I et J)




_ donc que par ce biais on peut prouver la sommabilité d’une famille double et qu’en niant

(cf TD19 Centrale 2023) ce principe (par exemple la permutation des sommations ne donne pas le méme
résultat) on récupére la non sommabilitéll

A nouveau parce que sommabilité équivaut & convergence absolue pour des familles indéxées par les entiers
naturels, il vient :

Corollaire 7 (Cas d’une famille indéxée par N?)

Si (Tn,m) (n,m)enz est sommable :

i) Pour tout n € N, la série Z Tnm €st absolument convergente, de somme S, et la série Z S, est
m>0 n>0

absolument convergente.

it) Pour tout m € N, la série Z Tn,m est absolument convergente, de somme T, et la série Z T,, est
n>0 m>0

absolument convergente.

o0 o0 (o) (o)
Dans ce cas on a : Z Tnm = Z(Z Biog0) — Z (Z Tn,m)
m

(n,m)eN? n=0 m=0 =0 n=0

1.2.8 Produit de somme

Commencons par une conséquence de Fubini (preuve détaillée en cours et a comprendre).

Proposition 8 Soient (z;)icr et (y;)ics deux familles sommables de nombres complezes :

CL) (a;iyj)(i7j)€1XJ € fl(I X J) b) Bt Z TiY; = (Z xz)(z yj).

(4,5)EIXJ el jedJ

Et nous pouvons désormais prouver (belle utilisation de la sommation par paquets et je vous conseille de
saisir les arguments de cette démonstration, produite en classe) :

Corollaire 8 (Retour du produit de Cauchy)

Soient Z Qs Z b, deuz séries absolument convergentes et Z cn, leur produit de Cauchy.
n>0 n>0 n>0

i) La série Z cn, est absolument convergente.
n>0

i1) Z Cn = (Z an)(z by).
n=0

n=0 n=0




Chapitre 2

Probabilités 1

2.1 Introduction

Les probabilités constituent désormais ! une discipline mathématique a part entiére comme la géométrie ou
l'algebre linéaire mais il fallut attendre 1’approche de Kolmogorov (circa 1930) pour y parvenir. En tant
que telle, elles se structurent logiquement autour d’une nervure axiomatique moins intuitive que la vision
fréquentiste, utilisée au lycée pour leur introduction . C’est, malgré cela, le prix a payer pour obtenir un
socle sain permettant d’engendrer des développements et applications plus substantiels.

Expliquons en quelques mots cette approche.

Une expérience aléatoire consiste en l'observation d’un phénomeéne théoriquement reproductible dans des
conditions analogues, dont les résultats dépendent du hasard (donc non prédictibles). A ce titre un lancer de
dés est une telle expérience alors que le recensement des résultats du classico Real-Barcelone n’en consitue
pas une.

A une expérience aléatoire donnée on associe ’ensemble des résultats possibles de celle-ci; il s’agit de I'univers
de cette expérience. On le note traditionnellement Q2. En général (sauf éventuellement dans le cas fini) cet
univers nous sera donné si son utilisation s’avere nécessaire ( dans les cas concrets sa détermination reléve
plutot de la statistique).

L’idée géniale de Kolmogorov consiste & définir un événement comme une partie (i.e sous-ensemble) choisie de
I'univers et une probabilité comme une application, régie par des contraintes issues de I’approche fréquentiste,
de l'ensemble des événements dans [0, 1]. Il s’affranchit ainsi de toute subjectivité, source des paradoxes en
probabilité, en ne s’intéressant plus aux causes des événements.

Dans tout ce qui suit, 'univers () est donné.

2.2 Espaces probabilisés

2.2.1 Espaces probabilisables

On jette une piece (non truquée) n fois de suite. Le modele fini (i.e univers fini) de premiére année permet
de considérer I’événement F; : " Obtenir face au i-ieme lancer", ce pour 1 < ¢ < n et de déterminer la

n
probabilité de 1’événement (noté A,,) U F; (i.e "obtenir toujours face sur les n lancers"). En effet on trouve
i=1

. e 1
aisément que cette probabilité vaut .

En revanche si on décide de lancer indéfiniment cette méme piece et si on désire connaitre la probabilité
(0.)

d’obtenir systématiquement face, ce modele est insuffisant puisque U F; ne le catalogue pas comme événe-
i=1

ment. Tout ce que 'on peut proposer c’est un passage a la limite dans la probabilité précédente mais en

quoi est-ce une probabilité ?

Il va falloir revenir sur cette notion, c’est I’objet du paragraphe suivant.

1. Poincaré doutait qu’on piit jamais les théoriser. Pour les noms propres vous pouvez vous reporter a I’appendice.



Définitions

Définition 10 On appelle tribu sur Q0 toute partie A de P () telle que :

i) Qe A.

i) VA€ A, A e A (stabilité par passage au complémentaire).

iii) Pour toute suite (Ay),~, d’éléments de A, U A, € A (stabilité par union dénombrable).

neN
Dans ce cas, le couple (2, A) est un espace probabilisable (lié a l'aléa étudié).

Remarque 6 Il s’agit de la premiére étape de la modélisation ; la tribu représente les parties de 2 dont on
va_mesurer les chances de réalisation.

Propriétés des tribus

Voici qui résume celles-ci :

Proposition 9 Soit A une tribu sur ), alors : i) & € A.
i) Pour toute suite (Ap)n>0 d’éléments de A, ﬂ A, € A (stabilité par intersection dénombrable).

neN
iti) A est stable par réunion et intersection finies.

iiii) Si (A, B) € A%, A\B € A.

Corollaire 9 Soient I un ensemble au plus dénombrable et (A;);er une famille d’éléments de A alors :
UAléA etﬂAiEA

i€l el

Vocabulaire probabiliste 1

Définition 11 Soit (2,.A) un espace probabilisable.

Les éléments de A sont les événements (ou observables) de [’espace probabilisable.

Q est l’événement certain.

@ est I’événement impossible.

Deux événements A et B sont dits incompatibles s’ils sont disjoints.

Si A est un événement, A désigne son événement contraire.

Si A et B sont des événements AU B est aussi I’événement "A ou B" et AN B est aussi ’événement "A et
B "

Lorsque les singletons sont des événements, ceuz-ci sont nommeés événements élémentaires.

Exemples

Voici les trois tribus les plus immédiates sur un univers {2 arbitraire :

Exemple 4 i) {@,Q} dite tribu grossiére.

it) P(Q2) (elle sera, en général, utilisée pour un univers au plus dénombrable) dite tribu pleine.

iii) Ta = {@,Q, A, A}, ou A est un événement; c’est la plus petite tribu, au sens de l’inclusion contenant
A, sur Q. On dit qu’elle est engendrée par A.

2.2.2 Probabilité sur un espace probabilisable

On considere (2, .A) un espace probabilisable.

Définition 12 Une probabilité sur (2, A) est une application P, définie de A et d valeurs dans Ry telle
que :

i)P(Q) = 1.

i) Pour toute suite (Ap)n>0 d’éléments de A, deux a deux incompatibles :

la série > P(Ay) converge et P(| ) An) = P(Ay).
n=0

neN
(Cette propriété se nomme o-additivité).




Définition 13 Si P est une probabilité sur (2,.A), le triplet (2, A,P) est un espace probabilisé (seconde
phase de la modélisation).

Remarque 7 La o-additivité se généralise comme suit pour une probabilité : si I est un ensemble au plus
dénombrable et si (A;)icr est une famille d’événements deuz d deux incompatibles on a aussi :
la famille (P(A;))ier est sommable et ZIP’(Ai) = IP’(U A;)

icl il
Ainsi la o-additivité entraine -t-elle la notion d’additivité de la version premiére année d’une probabilité, il
suffit de considérer I fini.

2.2.3 Propriétés d’une probabilité

On se place dans Iespace probabilisé (€2, 4, P).
On retrouve les propriétés du cas fini pour commencer.

Proposition 10 Soient A, B des événements :

0) P est a valeurs dans [0, 1].

i) P(@) = 0.

i) P(A) = 1 — P(A).

iii) AC B=P(A) <P(B) et P(B\A) =P(B) —P(A).
itii) PLAU B) =P(A) + P(B) —P(AN B).

Voila enfin des propriétés nouvelles :

Théoréme 5 (Continuité monotone)
i) Soit (Ay) une suite croissante (pour linclusion) d’événements.
La suite (P(A,)) est convergente et P(A,,) = P( U Ag).

keN
it) Soit (Ay) une suite décroissante (pour linclusion) d’événements.

La suite (P(A,,)) est convergente et P(A,) T P( ﬂ Ag).
keN

Une conséquence directe de ce théoréme est :

Corollaire 10 Soit (A,) une suite d’événements.
i) P(;LJ()Ai) S P(’gwAi)'

i) P(ﬁ Ai) = P(( 4:)
=0

1€EN

En utilisant la sous-additivité finie, la conservation des inégalités a la limite et la continuité croissante, on
prouve :

Théoréme 6 (Sous-additivité ou inégalité de Boole)

o0
Soit (Ay) une suite d’événements, alors, en convenant que Z P(A,) = +oo si la série Z]P’ ) diverge,

n=0
ona:P (U An) < iP(An)
n=0

neN

2.2.4 Vocabulaire probabiliste 2

On travaille dans un espace probabilisé.

Définition 14 On dit qu’un événement est négligeable si sa probabilité est nulle.
Un événement est presque sur si sa probabilité vaut 1.




On a sans peine que (Boole pour i) et passage a I’événement contraire pour ii)) :

Proposition 11 i) Toute réunion au plus dénombrable d’événements négligeables ’est également.
it) L’intersection au plus dénombrable d’événements presque sirs l’est encore.

En guise de conclusion :

Exemple 5 On reconsidére [’expérience aléatoire : on jette une piece équilibrée une infinité de fois; on
admet qu’il existe un espace probabilisé (que l’on ne précisera pas) permettant de modéliser cet aléa et on
considére a nouveau les événements (on admet qu’ils en sont dans ce cadre) F,, :" les n premiers lancers
donnent face ', ce pour n > 1. On rappelle que P(F,,) =27 ".

En utilisant la continuité décroissante, on obtient alors que P( ﬂ F,) = 0. Autrement dit, la probabilité

neN*
d’obtenir systématiquement face est nulle soit que cet événement est négligeable, ce qui n’a rien de

surprenant mais qui souligne une nuance entre tmpossible et négligeable.

2.3 Probabilité conditionnelle

2.3.1 Présentation du concept

Cette notion typiquement probabiliste se fonde sur le fait qu’une information supplémentaire peut modifier
la vraisemblance que 'on accorde a ’événement étudié. On en prend pleinement conscience avec I’exemple
trés simple d’un lancer de deux dés, au sujet duquel on s’intéresse a I’événement : " obtenir une somme > 10 ".
Sans plus d’information, la probabilité ( simple examen des possibilités (6, 6), (6,5), (5,6), (6,4), (4,6)et(5,5)

de cet événement est 5 si on sait qu’un des jets a donné 6, cette probabilité devient TR

Proposition 12 Soit B un événement non négligeable, l'application définie par :

P(ANB)

A— P(B)

est une probabilité sur (Q, A). On la note Pp ou P(. | B).

Définition 15 Dans le contexte précédent, Pg(A) = P(A | B) désigne, A étant un événement, la probabilité
(conditionnelle) de A sachant B (réalisé).
Si B=Q, Pg(A) =P(A)

Exemple 6 (Classique) On admet qu’il y a équiprobabilité d’avoir pour enfant une fille ou un gar¢on. Quelle
est la probabilité pour qu’un couple, ayant deux enfants, ait deux filles sachant tout d’abord que l’ainé est
une fille, puis qu’il a au moins une fille ?( Réponse :1/2 et 1/3)

2.3.2 Formule des probabilités composées

n
Soient Ay, ..., A, des événements tels que ﬂ A; soit non négligeable.
. Ve Z:l
On prouve par une simple récurrence que :

n n—1 n g=1
Proposition 13 P(ﬂ A;) =P(A))P(A2 | A1) X ... x P(A, | ﬂ A;) = HIP’(AZ- | ﬂ Aj)(en convenant que
i=1 i=1 i=1 j=1

Uintersection d’un nombre nul de parties de §) est Q).

Remarque 8 Si la famille A, ..., A, est décroissante pour l’inclusion, cette formule devient :
i—1

PA,) = P(A1)P(Az | A1) X ... x P(Ap | A1) puisque [ | Aj = Aj_y sij > 2.
j=1




2.3.3 Formule des probabilités totales

La finitude des sommes de séries a termes positifs dans les lignes qui suivent justifie leur existence.

Définition 16 Une suite (Ay,), d’évnements forme un systéme complet (resp. quasi-complet) d’événements
si les Ay, sont deux a deux incompatibles et si U Ap = Q (resp. si U A, est presque sur).
neN neN

oo
Noter que, dans ce cas, Z P(4,) =1.

n=0

Remarque 9 Cette notion généralise cette vue en premiere année ou les systemes complet ou quasi complets
étaient finis. Montrons en effet que c’est un cas trés particulier de la définition donnée ici. Soient p € N et
(Ao, ...., Ap) un systéme complet d’événements (au sens de la premiére année); en posant A, =0 pour tout
n > p, on dispose en (Ap)nen d’un systéme complet d’événements ( au sens de la définition précédente).

Il résulte de cette remarque que le résultat qui suit contient la formule des probabilités totales de premiere
année (somme finie).

Théoréme 7 Soient (A,), un systéme quasi- complet d’événements et B un événement alors :

P(B) = Z P(BNA,) = Z P(B | A,)P(A,)|, en convenant que P(B | A,)P(A,) = 0 si A, est négligeable.
n=0

n=0

2.3.4 Formule de Bayes ou probabilité des causes

On se donne A, B deux événements non négligeables, dont on connait les probabilités. Nous disposons aussi
de probabilité conditionnelle P(A | B); la question posée par Bayes se résume, pour 'essentiel, a obtenir
P(B | A).

P(A | B)P(B
Par définition méme, on a P(B | A) = P(4 | B)P(B)

P(A) (*)puis, avec la formule des probabilités totales (x)

P(A | B)P(B)
P(A | B)P(B) +P(A | B)P(B)

devient ((B, B) étant un sytéme complet d’événements) |P(B | A) =

De fagon plus générale :

Théoréme 8 Si (B,) est un systéme complet d’événements non négligeables et si A est un événement non
négligeable, alors :
P(A | B;)P(B;
2n=o P(A | Bn)P(Bn)

Cette formule nous sera tres peu utile (elle a plutdt un interét statistique et sert plutoét en biologie ou dans
les sciences humaines) et sa démonstration est immédiate a partir de () et des probabilités totales. Donnons
néanmoins un exemple dans lequel elle s’avere efficace.

Exemple 7 Fiabilité test ?
Un individu est pris au hasard dans une population au sein de laquelle la proportion de personnes infectées
par un virus (noté V) est de 10~%. On lui fait alors passer un test de détection relatif & V; on sait par
ailleurs que les probabilités d’avoir un résultat positif a ce test sont de 0,99 si lindividu est infecté, de 0,001
sinon. Sachant que le test est positif, quelle est la probabilité pour que l'individu soit réellement infecté ¢
Notons B l’'événement : " lindividu est infecté " et A : " le test est positif " .
Nous voulons déterminer P(B|A) alors que nous connaissons P(B) = 10~% ainsi que P(A|B) = 0,99 et
P(A|B) = 0,001.

0,99 x 1074

La formule (xx) donne P(B|A) = 0,99 x 10~ + 0,001 x (1 = 109 =0,09.

2.4 Indépendance

La encore, une notion purement probabiliste. Intuitivement, deux événements sont indépendants si le fait
de savoir que I'un d’entre eux est réalisé n’apporte pas d’information au sujet de la réalisation de I'autre
événement.

Définition 17 A, B deux événements sont indépendants si P(AN B) = P(A)P(B).




Proposition 14 Soient A, B deux événements non négligeables ; ils sont indépendants ssi :

P(A| B) = P(A) < P(B | A) = P(B).

Définition 18 Soit (A;),.; une famille au plus dénombrable d’événements est dite ( mutuelle-
ment)indépendante si , pour toute partie finie J de I, on a : P( ﬂ Aj) = H P(A;).
jed jed

Remarque 10 L’indépendance mutuelle entraine la deux a deux indépendance. En revanche la réciproque
est fausse (cf contre-exemple de Bernstein TD 20).

Proposition 15 Si Ay, ..., A, sont des événements mutuellement indépendants alors Ay, ..., A, le sont aussi,
donc Aq, ..., A, forment une famille d’événements mutuellement indépendants.

2.5 Exemples d’espaces probabilisés usuels

On se donne un univers €2 au plus dénombrable. I

Nous nous plagons dans 1’espace probabilisable P (€2)

Dans ce contexte tout singleton est événement (élémentaire) et tout événement en est réunion
au plus dénombrable, ce qui permettra (via la sigma-additivité ou 'additivité) dans un espace probabi-
lisé associé a l'espace probabilisable (€2, P(€2)) de définir automatiquement la probabilité d’'un événement
quelconque a partir de celles des événements élémentaires. Nous allons préciser davantage en revenant en
premier lieu au contexte de la premiére année.

2.5.1 () est fini

Soient n € N* et Q = {wi, ....wn }.
Il doit étre bien connu que :

Proposition 16 P est une probabilité sur P ().
Alors, en posant pour tout i € [1,n], P({wi}) =pi -

LL) sz‘ =1
i=1
b) Soit A C Q. On pose A ={w;, j€J C[1,n]}.

On a|P(A) = ij .
jeJ

Inversement :

n
Proposition 17 i (gi)ge[1,n) est un élément de R tel Z q; = 1, il existe une probabilité P sur P (2) telle
=1
que P({w;}) = ¢, ce pour tout i € [1,n].
Dés lors si A ={wj, j € J C [1,n]}, P(A) = qu.
Jj€J

2.5.2 () est dénombrable

Soit I un ensemble dénombrable et ¢ — w; une énumération de €.
Nous admettons la généralisation des deux propositions précédentes.




Théoréme 9 (Caractérisation d’une probabilité sur un univers dénombrable via les germes de probabilité)
1) Si P est une probabilité sur P ().
Alors, Vi € I, P({w;}) = p; :

a) ’ la famille (p;)icr est sommable, de somme 1

)

b) pour tout événement A = {w;, j€J CI,|P(A) = ij )
JjeJ

2) Inversement si (q;);cr est une famille de réels positifs, sommable et de somme 1, il existe une probabilité
sur P P (Q) telle que :

Ces relations déterminant P via le 1)b.

Dans ce cadre ’équibrobabilité s’avere impossible. I

2.6 Appendice

2.6.1 Rappels ensemblistes

On se donne deux ensembles I (celui des indices, pour nous, au plus dénombrable) et E ( quelconque ) ainsi
qu’une famille (B;);es de parties de E

Loi de de Morgan

Proposition 18 Dans ce contexte :

a) | JBi=()B:

iel iel
b) (\Bi=JBi
iel iel
Distributivités

A est une partie de F.

Proposition 19 Dans ce contexte :

o) ANU Bi) = UAN B:) (distributivité de () sur| )

i€l el
b) AN Bi) = N(AUB)) (distributivité de | Jsur ()
el i€l

2.6.2 Who is Who

‘ Mathématicien 1 Henri Poincaré (1854-1912) fut aussi phycisien, sa distraction était légendaire. ‘

‘ Mathématicien 2 Andrei Kolmogorov (1903-1987) mathématicien russe et pére des probabilités modernes.‘

Mathématicien 3 Thomas Bayes (1702-1761) clergyman anglais et mathématicien a ses heures perdues,
contemporain du philosophe David Hume.

Mathématicien 4 Serge Bernstein (1880-1968) mathématicien russe (en fait ukrainien), ancien éléve de
Supelec.




Chapitre 3

Variables aléatoires discretes

3.1 Généralités
3.2 Indépendance

3.3 Espérance mathématique

3.4 V.a.d a valeurs dans N

3.4.1 Fonction génératrice d’une variable aléatoire a valeurs dans N

’Dans tout ce paragraphe les variables aléatoires sont a valeurs dans N‘
On remarquera que, sans perte de généralité et pour simplifier I’exposition, on peut prendre N pour ensemble
des valeurs prises par une telle v.a; il suffit de décréter que la probabilité sur les valeurs non touchées est

nulle.
’Désormais X,Y,.... sont des v.a.d dont I'image est N. ‘

Définition 19 (Série et fonction génératrices de X )
La série entiére Z P(X = n)t" est la série génératrice de X .
n>0
La fonction génératrice de X est la somme de sa série génératrice. On la note Gx.

Par définition d’une loi de probabilité, on sait que la série Z P(X = n) converge. D’ou :
n>0

Proposition 20 i) La série génératice de X posséde un rayon de convergence Rx > 1.

it) Gx est définie au moins sur [—1,1].

i11) De facon plus précise (cf cours sur les séries entiéres) Gx est continue sur [—1,1] au moins et de classe
C* sur ] —1,1] au moins.

les fonctions génératrices des lois usuelles sont recensées dans le document les concernant I

On dispose des propriétés suivantes :

Proposition 21 Soient X,Y deuz variables aléatoires a valeurs dans N :
1)Vt €] — Rx,Rx[,Gx(t) = E(tX)
2) X =Y <= Gx = Gy. (Autrement dit, la fonction génératrice caractérise la loi de probabilité de X )

Preuve 1 1) Cf formule du transfert avec f : x € N — %, t fixé.

2) La condition est évidemment nécessaire. Inversement si les fonctions génératrices coincident, on a alors
P(X =n) = P(y = n) pour tout n, ce par unicité des coefficients d’une série entiére ; a partir de ld les lois
de probabilités respectives de X et'Y sont égales soit X — Y.

14




Nous allons caractériser le fait que X possede une espérance mathématique fini via Gx.

Proposition 22 X € L' si et seulement si Gx est dérivable en 1 et, dans ce cas, E(X) = G’y (1).

La preuve sera donnée en classe I
Si Rx > 1, ce qui prévaut pour les v.a suivant les lois usuelles, X admet une espérance mathématique.




