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Feuille d’exercices 9
ÉLÉMENTS DE CORRECTION

Exercice 1.
(e) Cette équation différentielle linéaire d’ordre 1 a pour équation homogène associée :

y′h −
1

1 + e−t
yh = 0,

c’est-à-dire : y′h =
1

1 + e−t
yh =

et

1 + et
yh, de solutions les yh : t 7→ λe

∫
et

1+et
dt

= λeln |1+et| =

λ(1 + et), λ ∈ R.

Une solution particulière de l’équation de départ est yp : t 7→ λ(t)(1+et) avec λ′(t)(1+et) =
et

1 + et
,

c’est-à-dire λ′(t) =
et

(1 + et)2
. Donc λ : t 7→ − 1

1 + et
, donc yp : t 7→ −1 convient (ce que l’on

vérifie aisément).
Donc les solutions de l’équation de départ sont les y : t 7→ λ(1 + et)− 1, λ ∈ R.
La condition initiale y(0) = 3 s’écrit 2λ− 1 = 3, c’est-à-dire λ = 2. Donc :

S =
{
y : t 7→ 2(1 + et)− 1 = 2et + 1

}
.

(f) Cette équation différentielle linéaire d’ordre 1 a pour équation homogène associée :

y′h − yh = 0,

c’est-à-dire : y′h = yh, de solutions les yh : t 7→ λet, λ ∈ R.

Une solution particulière de l’équation de départ est yp : t 7→ λ(t)et avec λ′(t)et =
1

1 + e2t
, c’est-à-

dire λ′(t) =
e−t

1 + e2t
. Donc λ : t 7→

∫
e−t

1 + e2t
dt =

x=et

∫
1

x2(1 + x2)
dx =

∫ (
1

x2
− 1

1 + x2

)
dx =

−1

x
− arctan(x) = −e−t − arctan(et) convient, donc yp : t 7→ −1− et arctan(et) convient.

Donc les solutions de l’équation de départ sont les y : t 7→ λet − 1− et arctan(et), λ ∈ R.
La condition initiale y(0) =

π

4
s’écrit λ− 1− π

4
=

π

4
, c’est-à-dire λ =

π

2
+ 1. Donc :

S =
{
y : t 7→

(π
2
+ 1
)
et − 1− et arctan(et)

}
.

Exercice 2.
(c) Cette équation est définie sur R. De plus, t(t − 2) s’annule quand t = 0 ou 2, donc cette équation

est une équation différentielle linéaire d’ordre 1 sur I1 =]−∞, 0[, I2 =]0, 2[ ou I3 =]2,+∞[.
Sur chacun de ces intervalles, l’équation s’écrit :

y′ − 2

t(t− 2)
y =

(t− 1)(t− 3)

t(t− 2)
.



L’équation homogène associée :

y′h −
2

t(t− 2)
yh = 0,

a pour solutions les yh : t 7→ λe
∫

2
t(t−2)

dt = λe
∫
( 1
t−2

− 1
t )dt = λ

∣∣∣∣t− 2

t

∣∣∣∣ , λ ∈ R, c’est-à-dire, puisque

λ parcourt R, les yh : t 7→ λ
t− 2

t
, λ ∈ R.

Une solution particulière de l’équation de départ est yp : t 7→ λ(t)
t− 2

t
avec λ′(t)

t− 2

t
=

(t− 1)(t− 3)

t(t− 2)
,

c’est-à-dire λ′(t) =
(t− 1)(t− 3)

(t− 2)2
=

(t− 2)2 − 1

(t− 2)2
= 1− 1

(t− 2)2
, donc λ : t 7→ t+

1

t− 2
convient,

donc yp : t 7→ t− 2 +
1

t
convient.

Les solutions de l’équation sur chaque intervalle sont donc les y : t 7→ λ
t− 2

t
+ t − 2 +

1

t
=

λ− 2 + t+
1− 2λ

t
, λ ∈ R.

La seule solution continue en 0 est celle pour laquelle 1−2λ = 0, c’est-à-dire λ =
1

2
. Cette solution

est usuellement infiniment dérivable sur R, donc :

S =

{
y : t 7→ t− 3

2

}
.

(d) Cette équation est définie sur R+. De plus, 2t(
√
t+1) s’annule quand t = 0, donc cette équation est

une équation différentielle linéaire d’ordre 1 sur R∗
+.

Sur cet intervalle, l’équation s’écrit :

y′ − 2
√
t+ 1

t(
√
t+ 1)

y = 0.

C’est une équation homogène, de solutions les y : t 7→ λe
∫

2
√
t+1

t(
√
t+1)

dt
, λ ∈ R. Or :∫

2
√
t+ 1

t(
√
t+ 1)

dt =
x=

√
t

∫
2x+ 1

x(x+ 1)
dx =

∫
(2x+ 1)

(
1

x
− 1

x+ 1

)
dx

=

∫ (
1

x
+

1

x+ 1

)
dx = ln |x(x+ 1)| = ln

(√
t(
√
t+ 1)

)
,

donc les solutions de l’équation sont les y : t 7→ λ
√
t(
√
t+ 1) = λt+ λ

√
t.

La seule solution dérivable en 0 est celle pour laquelle λ = 0, donc :

S = {y : t 7→ 0}.

Exercice 3. On procède par analyse-synthèse :
• Soit f une solution. En dérivant l’identité par rapport à y, on a :

∀x, y ∈ R, f ′(x+ y) = f(x)f ′(y),

donc en particulier :
∀x ∈ R, f ′(x) = αf(x),



avec α = f ′(0). Donc f est solution d’une équation différentielle linéaire d’ordre 1 homogène, de
solutions les f : x 7→ λeαx. On a alors f ′(x) = λαeαx, donc f ′(0) = λα, donc la condition α = f ′(0)
s’écrit λ = 1 ou α = 0. Donc f : x 7→ eαx, α ∈ R, ou f : x 7→ λ, λ ∈ R.

• Réciproquement, si f : x 7→ eαx, α ∈ R, alors f est solution ; et si f : x 7→ λ, λ ∈ R, alors f est
solution si et seulement si λ = λ2, c’est-à-dire λ = 0 ou 1 (ce dernier cas se confond avec le cas
α = 0).

Finalement :
S = {f : x 7→ 0, f : x 7→ eαx | α ∈ R} .

Exercice 4. On procède par analyse-synthèse :
• Soit f une solution. En dérivant l’identité par rapport à y, on a :

∀x, y ∈ R∗
+, xf ′(xy) = f ′(y),

donc en particulier :
∀x ∈ R, f ′(x) =

α

x
,

avec α = f ′(1). Donc f : x 7→ α ln(x) + c, α, c ∈ R. La condition α = f ′(1) est automatiquement
vérifiée.

• Réciproquement, si f : x 7→ α ln(x)+c, α, c ∈ R, alors : (f est solution)⇔ (∀x, y ∈ R∗
+, α ln(xy)+

c = α ln(x) + α ln(y) + 2c) ⇔ c = 2c ⇔ c = 0.
Finalement :

S = {f : x 7→ α ln(x) | α ∈ R} .

Exercice 5. Il s’agit d’un problème de Cauchy d’ordre 1, qui, d’après le théorème de Cauchy-Lipschitz,
admet une et une seule solution.
On pose x = sin(t) et y(t) = z(x) = z(sin t), alors : y′(t) = cos(t)z′(x), donc :

z′(x) =
z(x)

cos2 t
=

z(x)

1− x2
.

Donc z : x 7→ λe
∫

dx
1−x2 , λ ∈ R. Or :∫

dx

1− x2
=

∫
1

2

(
1

1− x
+

1

1 + x

)
dx =

1

2
ln

(
1 + x

1− x

)
,

donc z : x 7→ λ

√
1 + x

1− x
, λ ∈ R, donc y : t 7→ λ

√
1 + sin t

1− sin t
, λ ∈ R.

La condition initiale y(0) = 1 s’écrit λ = 1, donc :

S =

{
y : t 7→

√
1 + sin t

1− sin t

}
.

Exercice 6.
(c) L’équation (E) est une équation différentielle linéaire d’ordre 2, à coefficients constants. Ses solu-

tions sont les y = Re(Y ), où Y est solution de l’équation :

Y ′′ − 2Y ′ + Y = ei2t.



Le polynôme caractéristique associé est P (r) = r2 − 2r + 1 = (r − 1)2, de racine double r0 = 1.
Les solutions de l’équation homogène sont donc les Yh : t 7→ (λt + µ)et, λ, µ ∈ C, et une solution

particulière est Yp : t 7→
1

P (2i)
ei2t =

1

−3− 4i
ei2t =

(
− 3

25
+

4

25
i

)
(cos(2t) + i sin(2t)), donc :

S(E) =

{
y : t 7→ (λt+ µ)et − 3

25
cos(2t)− 4

25
sin(2t) | λ, µ ∈ R

}
.

Soit y ∈ S, on a alors :

• y(0) = 0 ⇔ µ− 3

25
= 0,

• y′(0) = 0 ⇔ λ+ µ− 8

25
= 0 d’où :

S =

{
y : t 7→

(
t

5
+

3

25

)
et − 3

25
cos(2t)− 4

25
sin(2t)

}
.

(d) Il s’agit d’une équation différentielle linéaire d’ordre 2, à coefficients constants. Ses solutions sont
les y = Re(Y ), où Y est solution de l’équation :

Y ′′ − 2Y ′ − 3Y = e(−1+i)t.

Le polynôme caractéristique associé est P (r) = r2 − 2r − 3, de discriminant ∆ = 16, donc de

racines r1,2 =
2± 4

2
= −1 ou 3.

Les solutions de l’équation homogène sont donc les Yh : t 7→ λe−t+µe3t, λ, µ ∈ C, et une solution

particulière est Yp : t 7→
1

P (−1 + i)
e(−1+i)t =

1

−1 + 3i
e−teit =

(
− 1

10
− 3

10
i

)
e−t (cos(t) + i sin(t)),

donc :

S =

{
y : t 7→ λe−t + µe3t + e−t

(
− 1

10
cos(t) +

3

10
sin(t)

)
| λ, µ ∈ R

}
.

(e) Il s’agit d’une équation différentielle linéaire d’ordre 2, à coefficients constants, d’inconnue y : R →
C. Le polynôme caractéristique associé est P (r) = r2− r+(1+ i), de discriminant ∆ = −3−4i =
(x+ iy)2 avec x2 − y2 = −3, 2xy = −4 et x2 + y2 = |∆| = 5, donc x2 = 1 et y2 = 4 avec xy < 0,

donc ∆ = (1− 2i)2. Donc P (r) a pour racines r1,2 =
1± (1− 2i)

2
= 1− i ou i.

Donc
S =

{
y : t 7→ λe(1−i)t + µeit | λ, µ ∈ C

}
.

(f) Il s’agit d’une équation différentielle linéaire d’ordre 2, à coefficients constants. L’équation homo-
gène a pour solutions usuelles les yh : t 7→ λ cos(t) + µ sin(t), λ, µ ∈ R.

Comme 2sh (t) = et − e−t, une solution particulière est yp : t 7→ 1

P (1)
et − 1

P (−1)
e−t où

P (r) = r2 + 1, donc yp : t 7→
1

2
et − 1

2
e−t = sh (t) (ce que l’on vérifie aisément). Donc l’équation

a pour solutions les y : t 7→ λ cos(t) + µ sin(t) + sh (t), λ, µ ∈ R.
Les conditions initiales s’écrivent λ = 0 et µ+ 1 = 2, donc λ = 0 et µ = 1. Donc :

S = {y : t 7→ sin(t) + sh (t)} .



(g) Il s’agit d’une équation différentielle linéaire d’ordre 2, à coefficients constants. Son polynôme ca-
ractéristique est P (r) = r2 − 3r + 2 = (r − 1)(r − 2), donc l’équation homogène a pour solutions
les yh : x 7→ λex+µe2x, λ, µ ∈ R. Le second membre est polynomial de degré 3, donc une solution
particulière est yp : x 7→ ax3 + bx2 + cx+ d, avec :

(6ax+ 2b)− 3(3ax2 + 2bx+ c) + 2(ax3 + bx2 + cx+ d) = 2x3 − 7x2 + 2x− 1,

donc, par identification : 2a = 2, −9a+2b = −7, 2c−6b+6a = 2, 2d−3c+2b = −1, c’est-à-dire
a = b = c = 1 et d = 0. Donc :

S =
{
y : x 7→ λex + µe2x + x3 + x2 + x | λ, µ ∈ R

}
.

(h) Il s’agit d’une équation différentielle linéaire d’ordre 2, à coefficients constants. Son polynôme ca-

ractéristique est P (r) = r2−2r+2, de discriminant ∆ = −4, donc de racines r1,2 =
2± 2i

2
= 1±i.

Donc l’équation homogène a pour solutions les yh : x 7→ ex(λ cos(x) + µ sin(x)), λ, µ ∈ R.
Comme le second membre est le produit d’un polynôme de degré 1 par une exponentielle, une solu-
tion particulière est yp : x 7→ (ax+b)ex, d’où y′p : x 7→ (ax+a+b)ex, d’où y′′p : x 7→ (ax+2a+b)ex,
avec :

(ax+ 2a+ b)ex − 2(ax+ a+ b)ex + 2(ax+ b)ex = xex,

c’est-à-dire, par identification : a− 2a + 2a = 1 et 2a + b− 2(a + b) + 2b = 0, c’est-à-dire a = 1
et b = 0. Donc yp : x 7→ xex convient.
Les solutions sont donc les y : x 7→ ex(λ cos(x) + µ sin(x)) + xex, λ, µ ∈ R.
La condition initiale s’écrit λ = 1, donc :

S = {y : x 7→ ex(cos(x) + µ sin(x)) + xex | µ ∈ R} .

Exercice 7. Il s’agit d’une équation différentielle linéaire d’ordre 2 à coefficients constants.
L’équation homogène associée y′′ + y = 0 a classiquement pour ensemble de solutions :

Sh = {yh : t 7→ λ cos(t) + µ sin(t) | λ, µ ∈ R} .

Une solution particulière de l’équation complète est donnée :
• sur R− : par yp,1 : t 7→ −t+ 1,
• sur R+ : par yp,2 : t 7→ t+ 1.

Notons respectivement S1 et S2 les ensembles de solutions sur R− et R+, on a donc :

S1 = {y1 : t 7→ λ1 cos(t) + µ1 sin(t)− t+ 1 | λ1, µ1 ∈ R} ,

et
S2 = {y2 : t 7→ λ2 cos(t) + µ2 sin(t) + t+ 1 | λ2, µ2 ∈ R} .

Notons y une réunion de y1 et y2. On détermine alors lesquelles de ces solutions sont deux fois dérivables
sur R :

• y(t)− y(0)

t− 0
−→
t→0−

µ1 − 1 et
y(t)− y(0)

t− 0
−→
t→0+

µ2 + 1, donc y est dérivable en 0 si et seulement si

µ1 − 1 = µ2 + 1. On note alors µ = µ1 − 1 = µ2 + 1.

• Dans ce cas :
y′(t)− y′(0)

t− 0
−→
t→0−

λ1 et
y′(t)− y′(0)

t− 0
−→
t→0+

λ2, donc y est deux fois dérivable en 0 si et

seulement si λ1 = λ2. On note alors λ = λ1 = λ2.



Finalement :

S =


y : R → R

t 7→
{

λ cos(t) + (µ+ 1) sin(t)− t+ 1 si t ≤ 0
λ cos(t) + (µ− 1) sin(t) + t+ 1 si t ≥ 0

∣∣∣∣∣∣ λ, µ ∈ R


Exercice 8. On procède par analyse-synthèse :
• Soit f une solution, alors : ∀x ∈ R, f ′′(x) = −f ′(−x) = −f(x), c’est-à-dire f ′′ + f = 0, donc,

usuellement : f : x 7→ λ cos(x) + µ sin(x), λ, µ ∈ R.
• Réciproquement, soit f de cette forme. Alors f ′(x) = −λ sin(x) + µ cos(x), donc f est solution si et

seulement si : ∀x ∈ R, −λ sin(x) + µ cos(x) = λ cos(x) − µ sin(x), c’est-à-dire, par identification,
λ = µ.

Finalement :
S = {f : x 7→ λ(cos(x) + sin(x)) | λ ∈ R} .

Exercice 9. On pose t = lnx et z : t 7→ y(x). Alors : y(x) = z(lnx), donc y′(x) =
1

x
z′(lnx) =

1

x
z′(t),

puis y′′(x) = − 1

x2
z′(t) +

1

x2
z′′(t), donc :

x2y′′ + 3y + 1 = (x+ 1)2 ⇔ z′′ − z′ + 3z = x2 + 2x = e2t + 2et.

Cette dernière équation est une équation différentielle linéaire du second ordre à coefficients constants et
de second membre exponentiel. Le polynôme caractéristique associé est P (r) = r2 − r+ 3, de discrimi-

nant ∆ = −11, donc de racines r1,2 =
1± i

√
11

2
.

L’équation homogène a alors pour solutions les zh : t 7→ e
t
2

(
λ cos

(√
11

2
t

)
+ µ sin

(√
11

2
t

))
, λ, µ ∈

R, et une solution particulière de l’équation complète est zp : t 7→
1

P (2)
e2t +

2

P (1)
et =

1

5
e2t +

2

3
et. Les

solutions sont donc les :

z : t 7→ e
t
2

(
λ cos

(√
11

2
t

)
+ µ sin

(√
11

2
t

))
+

1

5
e2t +

2

3
et, λ, µ ∈ R,

et donc :

S =

{
y : x 7→

√
x

(
λ cos

(√
11

2
ln(x)

)
+ µ sin

(√
11

2
ln(x)

))
+

x2

5
+

2x

3
| λ, µ ∈ R

}
.

Exercice 11.
(a) Comme y est dérivable sur R, la fonction t 7→ eaty(−t) l’est aussi. Donc y′ est dérivable, donc y est

deux fois dérivable sur R. Ainsi, par récurrence sur l’assertion « y est n fois dérivables sur R », y est
infiniment dérivable sur R.

(b) On dérive l’identité donnée :

∀t ∈ R, y′′(t) = aeaty(−t)− eaty′(−t) = ay′(t)− eate−aty(t).

Donc y est solution de l’équation y′′ − ay′ + y = 0.



(c) Cette dernière équation (E ′) est une équation différentielle linéaire d’ordre 2 à coefficients constants,
homogène.
Son polynôme caractéristique P (r) = r2 − ar + 1 a pour discriminant ∆ = a2 − 4, donc :

• si |a| > 2 : le polynôme caractéristique a pour racines r1,2 =
a±

√
a2 − 4

2
, donc, en notant

ω =

√
a2 − 4

2
l’équation (E ′) a pour ensemble de solutions :

S ′ =
{
y : t 7→ λer1t + µer2t = e

at
2

(
λeωt + µe−ωt

)
| λ, µ ∈ R

}
.

Soit y ∈ S ′, on a alors : y ∈ S ⇔ y′(t) = eaty(−t) ⇔
{

a
2
λ+ ωλ = µ

a
2
µ− ωµ = λ

⇔ µ = r1λ, donc :

S =
{
y : t 7→ λe

at
2

(
eωt + r1e

−ωt
)
| λ ∈ R

}
.

• si |a| = 2 : le polynôme caractéristique a pour racine double r0 =
a

2
, donc l’équation (E ′) a pour

ensemble de solutions :

S ′ =
{
y : t 7→ (λt+ µ)e

at
2 | λ, µ ∈ R

}
.

Soit y ∈ S ′, on a alors : y ∈ S ⇔
{

a
2
λ = −λ

λ+ a
2
µ = µ

⇔ λ = 0 si a = 2, λ = 2µ si a = −2,

donc, si a = 2 :
S =

{
y : t 7→ µet | µ ∈ R

}
,

et si a = −2 :
S =

{
y : t 7→ µ(2t+ 1)te−t | λ ∈ R

}
.

• si |a| < 2 : le polynôme caractéristique a pour racines r1,2 =
a± i

√
4− a2

2
, donc, en notant

ω =

√
4− a2

2
, l’équation (E ′) a pour ensemble de solutions :

S ′ =
{
y : t 7→ e

at
2 (λ cos(ωt) + µ sin(ωt)) | λ, µ ∈ R

}
.

Soit y ∈ S ′, on a alors : y ∈ S ⇔
{

a
2
λ+ ωµ = λ

a
2
µ− ωλ = −µ

⇔ µ =

√
2− a

2 + a
λ, donc :

S =

{
y : t 7→ λe

at
2

(
cos(ωt) +

√
2− a

2 + a
sin(ωt)

)
| λ ∈ R

}
.

Exercice 12.
(a) Notons u = x+ y et v = x− y. On a :{

x′ = y + t2

y′ = x− t2
⇔

{
u′ = u
v′ = −v + 2t2

⇔ ∃λ, µ ∈ R,
{

u : t 7→ λet

v : t 7→ µe−t + 2t2 − 4t+ 4

⇔ ∃λ, µ ∈ R,
{

x : t 7→ λet + µe−t + t2 − 2t+ 2
y : t 7→ λet − µe−t − t2 + 2t− 2

.



(b) Soit (x, y) une solution du système. Alors :

x′′ = −7x′ + y′ = −7x′ − 2x− 5y = −7x′ − 2x− 5(x′ + 7x− 1) = −12x′ − 37x+ 5,

c’est-à-dire que x est solution de l’équation :

x′′ + 12x′ + 37x = 5.

Cette équation différentielle linéaire d’ordre 2 à coefficients constants a pour polynôme caractéris-

tique P (r) = r2 + 12r + 37, de discriminant ∆ = −4, donc de racines r1,2 =
−12± 2i

2
= −6± i.

De plus, une solution particulière évidente de l’équation est x =
5

37
, donc :

∃λ, µ ∈ R, x : t 7→ e−6t (λ cos(t) + µ sin(t)) +
5

37
.

De même, y est solution de l’équation y′′ + 12y′ + 37y = −2, donc :

∃α, β ∈ R, y : t 7→ e−6t (α cos(t) + β sin(t))− 2

37
.

Par identification : α = λ+ µ et β = −λ+ µ, d’où :

(x, y) ∈ S ⇔ ∃λ, µ ∈ R,


x : t 7→ e−6t (λ cos(t) + µ sin(t)) +

5

37

y : t 7→ e−6t ((λ+ µ) cos(t) + (−λ+ µ) sin(t))− 2

37

.

(c) On pose u = x + iy. Alors x et y sont solutions du système si et seulement si u est solution de
l’équation :

u′ − (2t+ i)u = teit.

C’est une équation différentielle linéaire d’ordre 1, d’inconnue u : R → C. L’équation homogène
associée a pour solutions les uh : t 7→ λe

∫
(2t+i)dt = λet

2+it, λ ∈ R.
Une solution particulière est up : t 7→ λ(t)et

2+it, avec λ′(t)et
2+it = teit, c’est-à-dire λ′(t) = te−t2 ,

donc λ : t 7→ −1

2
e−t2 convient, donc up : t 7→ −1

2
eit convient.

Donc les solutions sont les u : t 7→ λet
2+it − 1

2
eit, λ ∈ R, donc :

S =

{
x : t 7→ λet

2

cos(t)− 1

2
cos(t), y : t 7→ λet

2

sin(t)− 1

2
sin(t) | λ ∈ R

}
.

Exercice 14. On dérive l’équation, ce qui donne : ty′′′ + y′′ − 2y′′ − ty′ − y = 0, soit :

ty′′′ − y′′ − ty′ − y = 0.

On redérive : ty′′′′ + y′′′ − y′′′ − ty′′ − y′ − y′ = 0, soit :

ty′′′′ − ty′′ − 2y′ = 0.

Or 2y′ = ty′′ − ty, donc : ty′′′′ − 2ty′′ + ty = 0, soit (comme t ∈ R∗
+) :

y′′′′ − 2y′′ + y = 0.



Il s’agit d’une équation différentielle linéaire d’ordre 4 à coefficients constants, homogène, de polynôme
caractéristique P (r) = r4 − 2r2 + 1 = (r2 − 1)2 = (r − 1)2(r + 1)2. Donc :

y : t 7→ (λt+ µ)et + (νt+ ξ)e−t, λ, µ, ν, ξ ∈ R.

ty′′ − 2y′ − ty = 0

Réciproquement, soit y de cette forme, alors :

y′(t) = (λt+ λ+ µ)et + (−νt+ ν − ξ)e−t,

puis :
y′′(t) = (λt+ 2λ+ µ)et + (νt− 2ν + ξ)e−t,

donc y est solution si et seulement si :

(λ−λ)t2et+(2λ+µ−2λ−µ)tet+(ν−ν)t2e−t+(−2ν+ξ+2ν−ξ)te−t−2(λ+µ)et−2(ν−ξ)e−t = 0,

c’est-à-dire, par identification : λ+ µ = ν − ξ = 0. Finalement :

S =
{
y : t 7→ λ(t− 1)et + ν(t+ 1)e−t | λ, ν ∈ R

}
.

Exercice 15.
(a) On pose z =

1

y
, alors z′ = − y′

y2
= −y′z2, donc :

y′ + ay + by2 = 0 ⇔ − z′

z2
+

a

z
+

b

z2
= 0 ⇔ z′ − az = b.

Cette dernière équation est une équation différentielle linéaire d’ordre 1, que l’on sait donc résoudre.
(b) Soit y0 une solution particulière, et posons w = y−y0. On a y′0+ay0+by20 = c donc, par soustraction :

(y est solution) ⇔ w′ + aw + b(y2 − y20) = 0.

Or : y2 − y20 = (y − y0)(y + y0) = w(w + 2y0) = 2y0w + w2, donc :

(y est solution) ⇔ w′ + (a+ 2by0)w + bw2 = 0,

ce qui nous ramène au premier cas.

(c) Soit y0 : x 7→ 1

x
. Alors : x2(y′0 + y20) = x2 ×

(
− 1

x2
+

1

x2

)
= 0 = xy0 − 1, donc y0 est solution.

On pose w = y − y0, alors, d’après (b) (avec a = −1

x
et b = 1) :

x2(y′ + y2) = xy − 1 ⇔ w′ +
w

x
+ w2 = 0.

On pose ensuite z =
1

w
(lorsque w ̸= 0, c’est-à-dire y ̸= y0), alors d’après (a) (avec a =

1

x
et

b = 1) :
x2(y′ + y2) = xy − 1 ⇔ z′ − z

x
= 1.



Cette dernière équation est une équation différentielle d’ordre 1. L’équation homogène associée a
pour solutions les zh : x 7→ λe

∫
dx
x = λx, λ ∈ R, et une solution particulière de l’équation complète

est zp : x 7→ λ(x)x, avec λ′(x)x = 1, donc λ′(x) =
1

x
, donc λ(x) = ln(x), donc zp : x 7→ x ln(x)

convient.
Donc les solutions sont les z : x 7→ λx+x ln(x), λ ∈ R, c’est-à-dire les w : x 7→ 1

λx+ x ln(x)
, λ ∈

R, c’est-à-dire :

S =

{
y : x 7→ 1

x
, y : x 7→ 1

λx+ x ln(x)
+

1

x
| λ ∈ R

}
.


