Corrigé du TD 9 : Normes et retour sur TD8

Exercice (**) 1 (Matrices compagnons ou de Froebenius)

Soient
$$n \ge 2$$
 et $P = X^n + \sum_{k=0}^{n-1} a_k X^k$. On pose :
$$C_P = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & \ddots & \ddots & \vdots & -a_1 \\ & \ddots & \ddots & 0 & \vdots \\ & & 1 & -a_{n-1} \end{pmatrix} \in M_n(\mathbb{C}) \text{ (matrice compagnon de } P).$$

On rappelle que le rang d'une matrice est la dimension de l'espace vectoriel engendré par les colonnes de la matrice.

- a) Déterminer suivant a_0 le rang de C_P .
- (Observer que les n-1 premières colonnes sont libres).
- b) En examinant le rang de $C_P \lambda I_n$ et sans chercher à déterminer valeur ou vecteur propre, prouver que tout sous-espace propre de C_P est de dimension 1.
- (Prenez en compte que le noyau de $C_P \lambda I_n$ est au moins de dimension 1)
- c) En le calculant, prouver que P est le polynôme caractéristique de $C_P($ On pourra procéder par récurrence).
- d) Trouver une CNS portant sur P pour que C_P soit diagonalisable.
- e) (Plus difficile) Prouver le théorème de Cayley-Hamilton pour la matrice C_P .

Exercice (*) 1 Pour
$$P \in \mathbb{R}[X]$$
, on pose $N(P) = \sum_{n=0}^{\infty} |P^{(n)}(1)|$.

Etablir que N est une norme sur $\mathbb{R}[X]$.

(On justifiera la définition de N).

Exercice (*) 2 i) Pour $A \in M_n(\mathbb{R})$, prouver que, si on pose $S(A) = \sqrt{tr(A^tA)}$, S est une norme sur $M_n(\mathbb{R})$.

(On pourra utiliser la norme euclidienne $\|.\|_2$ sur un espace approprié)

ii) (Plus difficile) Comparer S(AB) et S(A)S(B), pour $(A,B) \in M_n(\mathbb{R})^2$

Exercice (*) 3 Soit E un \mathbb{K} espace vectoriel et ϕ une application de E dans \mathbb{R}^+ qui soit homogène.

- a) Que vaut $\phi(0_E)$?
- b) Donner pour E de votre choix une telle application qui en outre vérifie l'inégalité triangulaire sans satisfaire la propriété de séparation.

Solution:

- a) 0. Ce en prenant le scalaire $\lambda = 0$ et $x = 0_E$ dans la définition de l'homogénéité.
- b) $E = \mathbb{R}[X]$ et $\phi(P) = |P(1)|$ pour tout $P \in E$ par exemple

Exercice (**) 2 Existe-t-il une norme N sur $M_n(\mathbb{C})$ telle que $N(AB) \geq N(A)N(B)$ pour tout $(A,B) \in (M_n(\mathbb{C}))^2$?

(Penser aux matrices nilpotentes).

Solution:

On considère notre bonne amie $A \neq 0_2$ telle que $A^2 = 0_2$ dès lors si N existait on aurait $N(A^2) = 0 \ge$

 $(N(A)^2 \ge 0.$

Ce qui contredit la séparation que N devrait vérifier

Exercice $(\star \star \star)$ 1 a) On note $J(\lambda) \in M_n(\mathbb{R})$ la matrice dont le coefficient situé sur la première ligne et la n-ième colonne vaut λ sachant que tous ses autres coefficients sont nuls.

Prouver que pour $\lambda \in \mathbb{R}^*$, $J(\lambda) \sim J(1)$.

b) Existe-t-il une norme N sur $M_n(\mathbb{R})$ telle que :

 $\forall A \in M_n(\mathbb{C}), \ \forall P \in GL_n(\mathbb{C}), \ N(P^{-1}AP) = N(A)$?

Solution:

- a) Posons $P=diag(\lambda,1,....,1)$ qui est bien sûr inversible. Un calcul immédiat montre que : $PJ(1)P^{-1}=J(\lambda)\blacksquare$
- b) Si une telle norme existait, on devrait avoir $N(J(\lambda)) = N(J(1))$. Comme $J(\lambda) = \lambda J(1)$, on aurait aussi $|\lambda|N(J(1)) = N(J(1))$, ce pour tout $\lambda \neq 0$. C'est absurde puisque N(J(1)) > 0 par séparation