Corrigé du DS 2 Mines + (4 heures).

La rédaction, l'argumentation et la présentation matérielle entrent dans une part significative de la notation; vous devrez aussi respecter la terminologie et les règles d'usage en vigueur. Les résultats numériques seront encadrés et simplifiés.

Tout manquement à ces consignes sera sanctionné.

.....

PROBLEME 1

Notations

- n désigne un entier naturel non nul.
- \mathbf{K} désigne \mathbf{R} ou \mathbb{C} .
- $M_n(\mathbf{K})$ désigne l'espace vectoriel des matrices carrées de taille n et à coefficients dans K et pour une matrice M de $M_n(\mathbf{K})$, on note χ_M son polynôme caractéristique.
- On confondra abusivement, pour le calcul matriciel, le vecteur $X = (x_1, x_2, \dots, x_n)$ de \mathbf{K}^n avec la matrice colonne $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ de ses coordonnées dans la base canonique de \mathbf{K}^n .
- Pour $X = (x_1, x_2, ..., x_n)$ de \mathbb{C}^n , on notera son conjugué $\overline{X} = (\overline{x_1}, \overline{x_2}, ..., \overline{x_n})$, sa partie réelle $\text{Re}(X) = \frac{X + \overline{X}}{2}$ et sa partie imaginaire $\text{Im}(X) = \frac{X \overline{X}}{2i}$.
- Si $M \in \mathcal{M}_n(\mathbf{R})$, l'endomorphisme de \mathbf{R}^n (respectivement \mathbf{C}^n) canoniquement associé à M est:

$$\begin{array}{cccc} \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\ X & \longmapsto & MX \end{array} \quad \left(\begin{array}{cccc} \operatorname{respectivement} & \mathbb{C}^n & \longrightarrow & \mathbb{C}^n \\ X & \longmapsto & MX \end{array} \right).$$

1 Matrices semi-simples

Définition 1 Une matrice de $M_n(\mathbf{R})$ est dite semi-simple si elle est diagonalisable dans $M_n(\mathbf{C})$.

Définition 2 Une matrice M de $M_n(\mathbf{R})$ est dite presque diagonale s'il existe:

- i) deux entiers naturels p et q;
- ii) q réels a_1, a_2, \ldots, a_q ;
- iii) q réels non nuls b_1, b_2, \ldots, b_q ;
- iv) une matrice D diagonale de $M_p(\mathbf{R})$ tels que p + 2q = n et M est la matrice bloc suivante:

$$M = \begin{pmatrix} D & 0 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & M(a_1, b_1) & 0 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & M(a_2, b_2) & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & M(a_q, b_q) \end{pmatrix}$$

où: $\forall j \in [1, q]$, $M(a_j, b_j) = \begin{pmatrix} a_j & b_j \\ -b_j & a_j \end{pmatrix}$. Si p = 0, la matrice D n'est pas présente dans la matrice diagonale par blocs M. De même, si q = 0, alors M = D.

Soit A la matrice de $M_2(\mathbf{R})$ définie par :

$$A = \left(\begin{array}{cc} 1 & 1 \\ -1 & 3 \end{array}\right).$$

1. La matrice A est-elle semi-simple?

Solution:

Son polynôme caractéristique est : $X^2 - 4X + 4 = (X - 2)^2$.

<u>La matrice étant non scal</u>aire et à spectre réduit à un singleton, elle n'est pas diagonalisable sur C.

A n'est pas semi-simple

Soit B la matrice de $M_2(\mathbf{R})$ définie par :

$$B = \left(\begin{array}{cc} 3 & 2 \\ -5 & 1 \end{array}\right).$$

2. Démontrer que B est semi-simple et en déduire l'existence d'une matrice Q de $M_2(\mathbf{R})$ inversible et de deux réels a et b à déterminer tels que:

$$B = Q \begin{pmatrix} a & b \\ -b & a \end{pmatrix} Q^{-1}.$$

Indication: on pourra, pour un vecteur propre V de B, introduire les vecteurs $W_1 = \text{Re}(V)$ et $W_2 = \text{Im}(V)$.

Solution:

Le polynôme caractéristique de B, $X^2 - 4X + 13$, étant scindé et à racines simples sur \mathbb{C} , B est bien semi-simple.

Le spectre(complexe) de B est $\{2\pm 3i\}$; considérons donc $V=W_1+iW_2$ (avec les notations suggérées par l'énoncé) une colonne propre de B associée à 2+3i. La réalité des coefficients de B fait que $B(W_1+IW_2)=(2+3i)(W_1+iW_2)$ implique $BW_1=2W_1-3W_2$ et $BW_2=3W_1+2W_2$.

Par la suite nous prouvons que (W_1, W_2) est une base de \mathbb{R}^2 . Pour cela on observe que (V, \overline{V}) est une base de \mathbb{C}^2 (base de colonnes propres de B, diagonalisable sur \mathbb{C}), ce qui interdit toute colinéarité entre W_1 et W_2 . Dans cette base de \mathbb{R}^2 l'endomorphisme canoniquement associé à B est représenté

par
$$\begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix}$$
. La similitude voulue en découle

Soit M une matrice de $M_2(\mathbf{R})$.

On suppose dans la question 3) seulement que M admet deux valeurs propres complexes $\mu = a + ib$ et $\bar{\mu} = a - ib$ avec $a \in \mathbb{R}$ et $b \in \mathbb{R}^*$.

3. Démontrer que M est semi-simple et semblable dans $M_2(\mathbb{R})$ à la matrice:

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
.

Solution:

C'est la même démarche qu'en 2. puisque même contexte■

- 4. Démontrer que M est semi-simple si et seulement si l'une des conditions suivantes est satisfaite:
 - i) M est diagonalisable dans $M_2(\mathbf{R})$;
 - ii) χ_M admet deux racines complexes conjuguées de partie imaginaire non nulle.

Solution:

Si i) ou ii) réalisé, M est diagonalisable sur \mathbb{R} (i)) ou sur \mathbb{C} (cas ii), χ_M étant scindé et à racines simples sur \mathbb{C} comme dans 3.) donc M est semi-simple.

Inversement si M est semi-simple et que M n'est pas diagonalisable sur \mathbb{R} ou bien le spectre (complexe) de M est contitué de 2 racines conjuguées non réelles ou bien ce spectre ne contient qu'un élément qui est nécessairement un réel. Le caractère diagonalisable sur $\mathbb C$ entraînerait que M soit scalaire donc dz sur R ce qui est contadictoire. Donc i) ou ii) est bien réalisé

■

5. Soit N une matrice de $M_n(\mathbf{R})$ semblable à une matrice presque diagonale. Démontrer que N est semi-simple.

Solution:

La C diagonalisabilité étant invariant de similtude, il suffit de montrer qu'une matrice presque diagonale est diagonalisable sur \mathbb{C} .

Posons $N = diag(D, M_1, ...M_q)$ avec des notations simplifiées mais similaires à la définition de presque diagonale.

Par 3. chaque M_i étant semi-simple, il existe $P_i \in GL_2(\mathbb{C})$ et Δ_i diagonale (à coefficients complexes)

telles que $M_i = P_i \Delta_i P_i^{-1}$, ce pour tout $i \in [1, q]$. En posant $P = diag(I_p, P^1, ..., P^q)$ (clairement inversible car diagonale par blocs tous inversibles), il vient $N = Pdiag(D, \Delta_1, ..., \Delta_q)P^{-1}$. Ce qui montre le caractère semi-simple de $N \blacksquare$

6. Soit N une matrice de $M_n(\mathbf{R})$. Donner la forme factorisée de χ_N dans $\mathbf{C}[X]$, en précisant dans les notations, les racines réelles et les racines complexes conjuguées. En déduire que si N est semi-simple alors elle est semblable dans $M_n(\mathbf{R})$ à une matrice presque diagonale.

Solution:

On note
$$t_1, ..., t_p$$
 une liste des racines réelles et $r_1, \overline{r_1}, ..., r_q, \overline{r_q}$ une liste des racines complexes de χ_N (donc $p+2q=n$ et $(p,q)\in\mathbb{N}^2$). Dès lors :
$$\chi_N=\prod_{i=1}^p(X-t_i)\prod_{i=1}^q(X-r_i)(X-\overline{r_i})$$

Puisque notre matrice est diagonalisable sur \mathbb{C} , on peut associer à chaque t_i un vecteur propre $X_i \in \mathbb{R}^n$ de sorte que $(X_1, ..., X_s)$ soit libre (dans \mathbb{C}^n); on complète cette famille avec $(V_1, \overline{V_1},, \overline{V_q})$ pour obtenir une base de \mathbb{C}^n tout en exigeant que V_i (resp. $\overline{V_i}$ vecteur propre de N associé à r_i (resp. $\overline{r_i}$).

Pour tout $i \in [1, q]$, on pose $W_{1,i} = Re(V_i)$ et $W_{2,i} = Im(V_i)$. Comme vu en 2) la famille $(W_{1,i}, W_{2,i})$ est libre et il existe des réels a_i et $b_i \neq 0$ tels que $NW_{1,i} = a_iW_{1,i} - b_iW_{2,i}$ et $NW_{2,i} = b_iW_{1,i} + a_iW_{2,i}$. Finalement par construction dans la base de \mathbb{R}^n : $(X_1,...,X_q,W_{1,1},W_{2,1},...,W_{1,q},W_{2,q})$, la matrice de l'endomorphisme canoniquement associé à N est

$$M = \begin{pmatrix} Diag(t_1, ..., tp) & 0 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & M(a_1, b_1) & 0 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & M(a_2, b_2) & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & M(a_q, b_q) \end{pmatrix}$$

et N s'en trouve semblable dans $M_n(\mathbb{R})$ à une matrice presque diagonale

Une caractérisation des matrices diagonalisables de $M_n(\mathbf{C})$

Dans cette partie, E désigne un \mathbb{C} -espace vectoriel de dimension n et u désigne un endomorphisme de

On suppose dans les questions 7), 8) et 9) que u est diagonalisable. On note $\mathcal{B} = (v_1, v_2, \dots, v_n)$ une base de E formée de vecteurs propres de u. Soit F un sous-espace vectoriel de E, différent de $\{0_E\}$ et de E.

7. Démontrer qu'il existe $k \in [1, n]$, tel que $v_k \notin F$ et qu'alors F et la droite vectorielle engendrée par v_k sont en somme directe.

Solution:

Puisque $F \neq E$ et que $(v_1, ..., v_n)$ engendre E, un tel k existe bien \square .

Si $x \in F \cap Vect(v_k)$ alors il existe $t \in \mathbb{C}$ tel que $x = tv_k$. Si $t \neq 0$ alors $\frac{1}{t}x = v_k$ appartient à F. C'est absurde donc t = 0 et $x = 0_E$. En conclusion F et $Vect(v_k)$ sont bien en somme directe

On note alors:

$$\mathcal{A} = \{H \text{ sous-espace vectoriel de } E \text{ tel que } u(H) \subseteq H \text{ et } F \cap H = \{0_E\}\}$$

et:

$$\mathcal{L} = \{ p \in \mathbf{N}^* \mid \exists H \in \mathcal{A} : p = \dim(H) \}.$$

8. Démontrer que \mathcal{L} admet un plus grand élément que l'on nommera r.

Solution

Il s'agit d'une partie de \mathbb{N} majorée (par la dimension de E) et non vide; en effet 1 en est un élément puisque $Vect(v_k)$ est stable par u(car dirigé par un vp de u) et qu'il est en somme directe avec F d'après la question précédente

9. Démontrer que F admet un supplémentaire G dans E, stable par u.

Solution:

Considérons donc H un élément de \mathcal{A} de dimension r (donc de dimension maximale) et posons $F' = F \bigoplus H$.

Premier cas : F' = E, H est un supplémentaire de F dans E, stable par u.

Deuxième cas : $F' \neq E$ et donc en appliquant à F' la technique de la question 7, il existe $v_j \notin F'$ tel que $H' = H \bigoplus Vect(v_j) \in \mathcal{L}$ (car en somme directe avec F et stable par u (en tant que somme de tels sev). La maximalité de r est contredite et ce second cas ne se produit jamais

10. On suppose que tout sous-espace vectoriel de E possède un supplémentaire dans E, stable par u. Démontrer que u est diagonalisable. En déduire une caractérisation des matrices diagonalisables de $M_n(\mathbf{C})$. Indication: on pourra raisonner par l'absurde et introduire un sous-espace vectoriel, dont on justifiera l'existence, de dimension n-1 et contenant la somme des sous-espaces propres de u.

Solution:

Notons F la somme directe des sous-espaces propres de u. Travaillant avec des complexes $F \neq \{0_E\}$. Supposons $F \neq E$: F étant stable par u (somme de tels sev), il possède un supplémentaire $G \neq \{0_E\}$, stable par u. L'endomorphisme de G induit par u admet, comme endomorphisme d'un \mathbb{C} espace vectoriel de dimension finie ≥ 1 , au moins un vecteur propre. Ce dernier est en fait aussi un vecteur propre de u appartenant à G alors que tous les vecteurs propres de u sont dans F. Contradiction donc F = E et u est bien diagonalisable.

 $\overline{\text{Une CNS}}$ de diagonalisabilité de u est que tout sous-espace stable par u possède un supplémentaire (dans E) lui-même stable par u.

(Tenir aussi compte des sous-espaces triviaux écartés par l'énoncé)■

PROBLEME 2 Dans le problème, n est un nombre entier naturel supérieur ou égal à 2.

La matrice transposée d'une matrice $M \in \mathcal{M}_{n,m}(\mathbb{C})$ est notée tM .

 \mathbb{C}^n est identifié à l'espace $\mathcal{M}_{n,1}(\mathbb{C})$ des matrices colonnes à n lignes et à coefficients dans \mathbb{C} . Les coefficients d'un vecteur $x \in \mathbb{C}^n$ sont notés x_1, \ldots, x_n .

On définit $\|\cdot\|_1$ définie par

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

Pour tous $x \in \mathbb{C}^n$ et $y \in \mathbb{C}^n$, la matrice $^t xy \in \mathcal{M}_1(\mathbb{C})$ est identifiée au nombre complexe $\sum_{i=1}^n x_i y_i$.

Le sous-espace vectoriel de \mathbb{C}^n engendré par un vecteur $v \in \mathbb{C}^n \setminus \{0\}$ est noté $\mathbb{C}v$.

Une matrice $M \in \mathcal{M}_{n,m}(\mathbb{R})$ est dite positive (resp. strictement positive) lorsque tous ses coefficients sont des réels positifs (resp. strictement positifs). Cette propriété est notée $M \geq 0$ (resp. M > 0).

Si A et B sont deux matrices de $\mathcal{M}_{n,m}(\mathbb{R})$, on notera $A \geq B$ (resp. A > B) la propriété $A - B \geq 0$ (resp. A - B > 0). Ainsi, pour x et y dans \mathbb{R}^n ,

$$x \ge y \Leftrightarrow \forall i \in [1, n], \quad x_i \ge y_i.$$

Lorsque m = n, on utilisera la notation $\mathcal{M}_n(\mathbb{C})$ (resp $\mathcal{M}_n(\mathbb{R})$) pour $\mathcal{M}_{n,m}(\mathbb{C})$ (resp $\mathcal{M}_{n,m}(\mathbb{R})$). La matrice diagonale

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

sera notée $(\lambda_1, \ldots, \lambda_n)$. On note $I_n = (1, \ldots, 1)$ la matrice identité d'ordre n. Pour $M \in \mathcal{M}_n(\mathbb{C})$, on pose

$$||M|| = \sup_{x \in \mathbb{C}^n, \ ||x||_1 = 1} ||Mx||_1 = \sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{||Mx||_1}{||x||_1}.$$
 (1)

Une matrice $M \in \mathcal{M}_n(\mathbb{C})$ sera en général identifiée à l'endomorphisme φ_M de \mathbb{C}^n représenté par M dans la base canonique de \mathbb{C}^n : pour $x \in \mathbb{C}^n$, $\varphi_M(x) = Mx$. On appelle spectre d'une matrice $M \in \mathcal{M}_n(\mathbb{C})$, et on note Sp(M), l'ensemble des valeurs propres de M. Le rayon spectral de M, noté $\rho(M)$, est défini comme le maximum des modules des valeurs propres de M:

$$\rho(M) = \max\{|\lambda|; \ \lambda \in Sp(M)\}.$$

Première partie

1. Pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$ et tout nombre réel C > 0, montrer l'équivalence

$$||M|| \le C \Leftrightarrow \forall x \in \mathbb{C}^n : ||Mx||_1 \le C||x||_1.$$

Solution:

Supposons $||M|| \leq C$ et donnons nous $x \in \mathbb{C}^n$.

- i) $x = 0_{1,n}$ alors $||Mx||_1 = 0 \le C||x||_1 = 0$.
- ii) Sinon $\|\frac{1}{\|x\|_1}x\|_1 = 1$ donc $\|M(\frac{1}{\|x\|_1}x)\|_1 \le \|M\| \le C$ puis par linéarité : $\|Mx\|_1 \le C\|x\|_1$.

L'implication réciproque est évidente puisqu'on spécialise l'inégalité dont on part aux seuls vecteurs de norme-1 égale à $1 \blacksquare$

2. Montrer que pour $A, B \in \mathcal{M}_n(\mathbb{C}), \quad ||AB|| \leq ||A|| \, ||B||.$

Solution:

Pour $x \in \mathbb{C}^n$, $||ABx||_1 = ||A(Bx)||_1 \le ||A|| ||Bx||_1$, en utilisant la question précédente, où $M \leftarrow A$ et C = ||A||.

De la même façon $||Bx||_1 \le ||B|| ||x||_1$ donc $||ABx||_1 \le ||A|| ||B|| ||x||_1$, ce pour tout $x \in \mathbb{C}^n$.

Ce qui nous assure avec la même référence (ici C = ||A|| ||B||) de l'inégalité souhaitée

3. Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $a_{i,j}$ le coefficient de A d'indice de ligne i et d'indice de colonne j. Montrer que

$$||A|| = \max_{1 \le j \le n} \left(\sum_{i=1}^{n} |a_{i,j}| \right)$$

Solution:

Notons provisoirement
$$m = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{i,j}| \right)$$
.
Considérons $x = (x_1, ..., x_n) \in \mathbb{C}^n$ tel que $||x||_1 = 1$ alors pour tout $i \in [\![1, n]\!]$:

$$|(Ax)_i| = |\sum_{j=1}^n a_{ij}x_j| \le \sum_{j=1}^n |a_{ij}||x_j|$$
, ce par inégalité triangulaire donc (Fubini)

$$\sum_{i=1}^{n} |(Ax)_i| \le \sum_{j=1}^{n} |x_j| (\sum_{i=1}^{n} |a_{ij}|) \le m ||x||_1.$$

Ainsi (par 1))
$$||A|| \le m$$

Montrons maintenant que l'on peut obtenir l'égalité dans cette inégalité.

Malgré la débauche de notations livrées par l'énoncé, il nous incombe de proposer pour base canonique de \mathbb{C}^n : (e_1, e_n).

Soit un entier j pour lequel $m = \sum_{i=1}^n |a_{i,j}|$ alors $||Ae_j||_1 = m$ et bien sûr $||e_j||_1 = 1$. Egalité atteinte et

par conséquent on a bien
$$\boxed{\|A\| = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{i,j}|\right)} \blacksquare$$

4. On dit qu'une suite $(A^{(k)})_{k\in\mathbb{N}}$ de matrices de $\mathcal{M}_n(\mathbb{C})$ converge vers une matrice $B\in\mathcal{M}_n(\mathbb{C})$ lorsque

$$\forall i \in [1, n], \ \forall j \in [1, n], \quad \lim_{k \to +\infty} (a_{i,j})^{(k)} = b_{i,j}.$$

Montrer que la suite $(A^{(k)})$ converge vers B si et seulement si $\lim_{k \to +\infty} ||A^{(k)} - B|| = 0$.

Solution:

Dire que la suite $(A^{(k)})$ converge vers B équivaut à satisfaire $|b_{ij} - a_{ij}^{(k)}| \to 0$ pour tout $(i, j) \in [1, n]^2$. De plus dans le même contexte et pour tout entier naturel k (cf question précédente sous-employée): $|b_{ij} - a_{ij}^{(k)}| \le ||B - A^{(k)}|| \le \sum_{p,q} |b_{pq} - a_{pq}^{(k)}|.$

Ainsi par double implication immédiate on voit que $(A^{(k)})$ converge vers B ssi la suite $(\|B - A^{(k)}\|)$ converge vers 0 et on prend conscience de tout le bienfait d'une telle caractérisation■

5. On considère dans cette question une matrice $A \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure,

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & \cdots & a_{2,n} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & a_{n,n} \end{pmatrix}.$$

On suppose que

$$\forall i \in [1, n], |a_{i,i}| < 1.$$

Pour tout réel b > 0, on pose $P_b = (1, b, b^2, \dots, b^{n-1}) \in \mathcal{M}_n(\mathbb{R})$.

- (a) Calculer $P_b^{-1}AP_b$. Que se passe-t-il lorsqu'on fait tendre b vers 0 ?
- (b) Montrer qu'il existe b > 0 tel que

$$||P_b^{-1}AP_b|| < 1.$$

(c) En déduire que la suite $(A^k)_{k\in\mathbb{N}^*}$ converge vers 0.

Solution:

a) En notant $B=(b_{ij})$ la matrice $P_b^{-1}AP_b$ qui est bien sûr triangulaire supérieure, il vient $b_{ij}=b^{1-i}a_{ij}b^{j-1}=b^{j-i}a_{ij}$, ce pour $1\leq i\leq j\leq n$.

Il s'ensuit (avec la caractérisation du 4)) que $P_b^{-1}AP_b \to diag(a_{11},...,a_{nn}) = \boxed{D}$ si $b \to 0 \square$

b) Il est assez évident (cf expression obtenue en 3.) que ||.|| est une norme donc satisfait l'inégalité triangulaire en conséquence de quoi :

$$||P_b^{-1}AP_b|| \le ||D|| + ||P_b^{-1}AP_b - D||$$
.

Comme (cf 3. toujours) ||D|| < 1 et que $||P_b^{-1}AP_b - D|| \to 0$ si $b \to 0$ (par a)), on peut trouver b > 0tel que $||P_b^{-1}AP_b|| < 1\square$

c) Pour tout k et grâce à 2., nous avons :

$$0 \le ||A^k|| \le ||P_b|| ||P_b^{-1}A^k P_b|| ||P_b^{-1}|| \le ||P_b|| ||P_b^{-1}A P_b||^k ||P_b^{-1}||$$

 $0 \le \|A^k\| \le \|P_b\| \|P_b^{-1}A^kP_b\| \|P_b^{-1}\| \le \|P_b\| \|P_b^{-1}AP_b\|^k \|P_b^{-1}\|$. Le b) et le théorème des gendarmes permettent aisément de conclure à la convergence vers 0 de la suite ($||A^k||$) donc (4.) de la suite (A^k) vers la matrice nulle

Deuxième partie

6. Déterminer le rayon spectral des matrices suivantes

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}, \quad \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}.$$

Solution:

On a très facilement et dans l'ordre $1,0,1,\sqrt{2},4$

- 7. Dire, en justifiant brièvement la réponse, si les assertions suivantes sont exactes quels que soient $A, B \in \mathcal{M}_n(\mathbb{C}), \ \mu \in \mathbb{C}.$
 - i) $\rho(\mu A) = |\mu| \rho(A)$
 - ii) $\rho(A+B) \leq \rho(A) + \rho(B)$.
 - iii) $\rho(AB) < \rho(A)\rho(B)$.
 - iv) Pour $P \in \mathcal{M}_n(\mathbb{C})$ inversible, $\rho(P^{-1}AP) = \rho(A)$.
 - v) $\rho(^tA) = \rho(A)$.

Solution:

- i) Oui car $Sp(\mu A) = \mu Sp(A)$.
- ii) Non, prendre $A=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $B=^tA$ alors $\rho(A)=\rho(B)=0$ et $\rho(A+B=I_2)=1$.
- iii) Non, prendre les mêmes matrices qu'en ii).
- iv) Oui par invariance de similitude.
- v) Oui puisque deux matrices transposées l'une de l'autre ont même spectre
- 8. Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$,

$$\rho(A) < ||A||.$$

Solution:

Soient $t \in Sp(A)$ tel que $|t| = \rho(A)$ et x un vecteur propre de A associé à t que l'on peut supposer unitaire (quitte à le " diviser" par sa norme) i.e $||x||_1 = 1$.

Comme Ax = tx on dispose aussi (en passant aux normes) de $||Ax||_1 = \rho$. De part sa définition on a aussi $||A|| \ge ||Ax||_1$ d'où $|\rho(A) \le ||A||$

Dans les questions 9 à 11, on considère une matrice $A \in \mathcal{M}_n(\mathbb{C})$.

9. Montrer que si $\rho(A) < 1$, alors la suite $(A^k)_{k \in \mathbb{N}^*}$ converge vers 0.

Solution:

Dans ce cas A est semblable à une matrice T triangulaire supérieure satisfaisant aux hypothèses de la question 5.; en particulier la suite (T^k) converge vers 0_n .

Comme il existe $P \in Gl_n(\mathbb{C})$ telle que $A = PTP^{-1}$, il vient (pour tout entier naturel k et grâce à 2.)

$$0 \le ||A^k|| \le ||P|| ||T^k|| ||P^{-1}||.$$

Ce qui montre bien la convergence de la suite (A^k) vers 0_n

- 10. (a) Montrer que, pour tout $k \in \mathbb{N}^*$, $||A^k|| \ge \rho(A)^k$.
 - (b) On définit la partie de \mathbb{R}_+

$$E_A = \{ \alpha > 0 \mid \lim_{k \to +\infty} \left(\frac{A}{\alpha} \right)^k = 0 \}.$$

Montrer que $E_A =]\rho(A), +\infty[$.

Solution:

- a) On a clairement $\rho(A^k) \ge (\rho(A))^k$ donc avec 8. $\|A^k\| \ge \rho(A)^k$. b) Si $\alpha > \rho(A)$ alors $\rho(\frac{1}{\alpha}A) < 1$, par conséquent (avec 9.) $(\frac{1}{\alpha}A)^k \underset{k \to \infty}{\to} 0_n$. Autrement dit $]\rho(A), +\infty[\subset E_A]$.

Si maintenant $(\frac{1}{\alpha}A)^k \underset{k \to \infty}{\to} 0_n$, par a) et gendarmes la suite géoémtrique $((\frac{\rho(A)}{\alpha})^k)$ converge vers 0 donc sa raison, positive ici, est strictement inférieure à 1. Soit $\alpha > \rho(A)$ donc l'inclusion inverse est validée et partant l'égalité voulue

■

11. Montrer la formule

$$\lim_{k \to +\infty} ||A^k||^{1/k} = \rho(A).$$

Solution:

La question 10.a) prouve que pour tout $k \in \mathbb{N}^*$: $||A^k||^{1/k} \le \rho(A)$.

Donnons nous maintenant $\epsilon > 0$, par 10.b) nous savons que APCR : $\frac{\|A^k\|}{(\epsilon + o(A))^k} \le 1$.

Donc APCR : $||A^k||^{1/k} \le \epsilon + \rho(A)$

De cet encadrement APCR de $||A^k||^{1/k}$, on déduit (définition epsilonesque de la limite, que :

$$\lim_{k \to +\infty} \|A^k\|^{1/k} = \rho(A) \blacksquare$$

12. Pour $A \in \mathcal{M}_n(\mathbb{C})$ de coefficients $a_{i,j}$, on pose $A_+ = (b_{i,j})_{1 \leq i,j \leq n}$, où $b_{i,j} = |a_{i,j}|$. Montrer l'inégalité $\rho(A) \leq \rho(A_+).$

Solution:

On note par B la matrice A_+ .

On a sans problème et par récurrence que $|A_{ij}^k| \leq B_{ij}^k$. Dès lors avec 3., 11. et conservation des inégalités à la limite, nous obtenons $\rho(A) \leq \rho(B)$

Troisième partie

Dans toute cette partie, A est une matrice strictement positive de $\mathcal{M}_n(\mathbb{R})$. On se propose de démontrer les propriétés suivantes.

- (i) $\rho(A) > 0$, $\rho(A)$ est une valeur propre de A et toute autre valeur propre $\lambda \in \mathbb{C}$ de A vérifie $|\lambda| < \rho(A)$.
- (ii) $\rho(A)$ est une racine simple du polynôme caractéristique de A et $\ker(A-\rho(A)I_n)$ est engendré par un vecteur v_0 dont toutes les composantes sont strictement positives.
- (iii) Si v est un vecteur propre de A dont toutes les composantes sont positives, alors $v \in \ker(A \rho(A)I_n)$.
- (iv) Pour tout vecteur positif non nul x, il existe $c \in \mathbb{R}_+^*$ tel que $\lim_{k \to +\infty} \frac{A^k x}{\rho(A)^k} = cv_0$.
- 13. Soient z_1, \ldots, z_n des nombres complexes. Montrer que si

$$|z_1 + \dots + z_n| = |z_1| + \dots + |z_n|,$$

alors le vecteur $\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$ est colinéaire au vecteur $\begin{pmatrix} |z_1| \\ \vdots \\ |z_n| \end{pmatrix}$.

Solution:

14. Soient $x, y \in \mathbb{C}^n$, $\lambda, \mu \in \mathbb{C}$. Montrer que si $\lambda \neq \mu$, alors on a l'implication suivante : $(Ax = \lambda x \text{ et }^t Ay = \mu y) \Rightarrow {}^t xy = 0.$

Solution:

- 15. On suppose qu'il existe un réel positif μ et un vecteur positif non nul w tels que $Aw \geq \mu w$.
 - (a) Montrer que pour tout entier naturel $k, A^k w \ge \mu^k w$. En déduire que $\rho(A) \ge \mu$.
 - (b) Montrer que si $Aw > \mu w$, alors $\rho(A) > \mu$.
 - (c) On suppose à présent que dans le système d'inégalités $Aw \ge \mu w,$ la k-ième inégalité est stricte, c'est-à-dire

$$\sum_{j=1}^{n} a_{k,j} w_j > \mu w_k.$$

Montrer qu'il existe $\varepsilon > 0$ tel que, en posant $w'_j = w_j$ si $j \neq k$ et $w'_k = w_k + \varepsilon$, on a $Aw' > \mu w'$. En déduire que $\rho(A) > \mu$.

Solution:

- 16. Soit λ une valeur propre de A de module $\rho(A)$ et soit $x \in \mathbb{C}^n \setminus \{0\}$ un vecteur propre de A associé à λ . On définit le vecteur positif non nul v_0 par $(v_0)_i = |x_i|$ pour $1 \le i \le n$.
 - (a) Montrer que $Av_0 \ge \rho(A)v_0$, puis que

$$Av_0 = \rho(A)v_0.$$

(b) En déduire que $\rho(A) > 0$ et

$$\forall i \in [1, n], (v_0)_i > 0.$$

(c) Montrer que x est colinéaire à v_0 . En déduire que $\lambda = \rho(A)$.

La propriété (i) est démontrée. Solution :

17. En appliquant les résultats précédents à la matrice tA , on obtient l'existence de $w_0 \in \mathbb{R}^n$, dont toutes les composantes sont strictement positives, tel que ${}^tAw_0 = \rho(A)w_0$. On pose

$$F = \{ x \in \mathbb{C}^n \mid {}^t x w_0 = 0 \}.$$

(a) Montrer que F est un sous-espace vectoriel de \mathbb{C}^n stable par φ_A , et que

$$C^n = F \oplus \mathbb{C}v_0$$
.

(b) Montrer que si v est un vecteur propre de A associé à une valeur propre $\mu \neq \rho(A)$, alors $v \in F$. En déduire la propriété (iii).

Solution:

18. (a) On note ψ l'endomorphisme de F défini comme la restriction de φ_A à F. Montrer que toutes les valeurs propres de ψ sont de module strictement inférieur à $\rho(A)$. En déduire que $\rho(A)$ est une racine simple du polynôme caractéristique de A et que

$$\ker(A - \rho(A)I_n) = \mathbb{C}v_0.$$

La propriété (ii) est démontrée.

- (b) Montrer que si $x \in F$, $\lim_{k \to +\infty} \frac{A^k x}{\rho(A)^k} = 0$.
- (c) Soit x un vecteur positif non-nul. Déterminer la limite de $\frac{A^k x}{\rho(A)^k}$ lorsque k tend vers $+\infty$. La propriété (iv) est démontrée.

Solution: