Devoir surveillé n° 2

Corrigé

Exercice 1.

- 1. Soit $x \in \mathbb{R}$. Le nombre f(x) est défini lorsque $x 1 \ge 0$, donc le domaine de définition de f est $[1, +\infty[$.
- 2. La fonction f est la somme de $x\mapsto \sqrt{x-1}$, composée de $g:x\mapsto x-1$ par $h:x\mapsto \sqrt{x}$, et de $x\mapsto \sqrt{|x-2|}$, composée de $j:x\mapsto |x-2|$ par h. Comme g,h et j sont usuellement dérivables sur \mathbb{R} , \mathbb{R}_+^* et $\mathbb{R}\setminus\{2\}$ respectivement, f'(x) existe lorsque x-1>0 et |x-2|>0. Donc $D'_f=]1,2[\,\cup\,]2,+\infty[$.
- 3. Soit $x \in]1,2[$. On a : $f(x)=\sqrt{x-1}+\sqrt{2-x}$, donc, d'après la formule de dérivation d'une composée : $f'(x)=\frac{1}{2\sqrt{x-1}}-\frac{1}{2\sqrt{2-x}}$.
- 4. D'après le calcul précédent :

$$f'(x) > 0 \Leftrightarrow \frac{1}{2\sqrt{x-1}} - \frac{1}{2\sqrt{2-x}} > 0 \Leftrightarrow \frac{1}{\sqrt{x-1}} > \frac{1}{\sqrt{2-x}} \Leftrightarrow \sqrt{x-1} < \sqrt{2-x}.$$

Par conséquent, comme x - 1 > 0 et 2 - x > 0:

$$f'(x) > 0 \Leftrightarrow x - 1 < 2 - x \Leftrightarrow 2x < 3 \Leftrightarrow x < \frac{3}{2}.$$

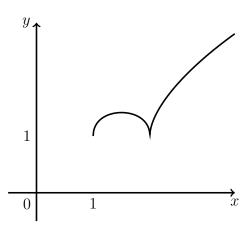
Donc la fonction f' est strictement positive sur $\left]1,\frac{3}{2}\right[$ et négative sur $\left[\frac{3}{2},2\right[$.

5. Pour tout x dans $[2, +\infty[$, $f(x) = \sqrt{x-1} + \sqrt{x-2}$, donc f est la somme de deux fonctions croissantes, donc est croissante sur $[2, +\infty[$.

6.

	x	1		$\frac{3}{2}$		2		$+\infty$
	f'(x)		+	0	_		+	
				$\sqrt{2}$				$+\infty$
	f		7		\searrow		7	
İ		1				1		

7.



Exercice 2.

1. Notons, pour tout
$$k \in \mathbb{N}^*$$
, $P_k = \sum_{j=1}^k j^2 = \frac{k(k+1)(2k+1)}{6}$.

Pour k = 1: d'une part, $\sum_{i=1}^{1} j^2 = 1^2 = 1$; d'autre part, $\frac{1(1+1)(2+1)}{6} = 1$, donc P_1 est vraie.

Soit $k \in \mathbb{N}^*$. Supposons P_k vraie, montrons P_{k+1} :

$$\sum_{j=1}^{k+1} j^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 = (k+1)\frac{k(2k+1) + 6(k+1)}{6}$$
$$= \frac{(k+1)(2k^2 + 7k + 6)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}.$$

Donc P_{k+1} est vraie, donc P_k est héréditaire.

Donc, par récurrence, P_k est vraie pour tout $k \in \mathbb{N}^*$.

2. On a
$$S = \sum_{k=1}^{n} \frac{k(k+1)(2k+1)}{6} = \frac{1}{6} \sum_{k=1}^{n} k^3 + 3k^2 + k = \frac{1}{3}C + \frac{1}{2}B + \frac{1}{6}A$$
 par linéarité.

3. On a
$$S = \sum_{1 \le j \le k \le n} j^2 = \sum_{j=1}^n \sum_{k=j}^n j^2 = \sum_{j=1}^n (n-j+1)j^2 = \sum_{j=1}^n (n+1)j^2 - j^3 = (n+1)B - C.$$

4. D'après les questions précédentes, $\frac{1}{3}C + \frac{1}{2}B + \frac{1}{6}A = (n+1)B - C$, donc :

$$C = \frac{3}{4} \left(\left(n + \frac{1}{2} \right) B - \frac{1}{6} A \right)$$

$$= \frac{2n+1}{2} \frac{n(n+1)(2n+1)}{8} - \frac{n(n+1)}{16}$$

$$= \frac{n(n+1)}{16} ((2n+1)^2 - 1)$$

$$= \frac{n^2(n+1)^2}{4}.$$

5.

$$\sum_{k=1}^{n} k(k+1)(k+2) = \sum_{l=2}^{n+1} l(l-1)(l+1) \text{ en posant } l = k+1$$

$$= \sum_{l=2}^{n+1} l^3 - l$$

$$= \frac{(n+1)^2(n+2)^2}{4} - \frac{(n+1)(n+2)}{2}$$

$$= \frac{(n+1)(n+2)}{2} \left(\frac{(n+1)(n+2)}{2} - 1 \right)$$

$$= \frac{(n+1)(n+2)}{2} \frac{n^2 + 3n}{2}$$

$$= \frac{n(n+1)(n+2)(n+3)}{4}.$$

Exercice 3.

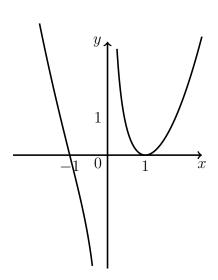
- 1. La fonction cos est 2π -périodique d'après le cours. Soient T>0 et $x\in\mathbb{R}$, on a $\cos(\sqrt{2}(x+T))=\cos(\sqrt{2}x+\sqrt{2}T)$. Donc $x\mapsto\cos(\sqrt{2}x)$ est T-périodique si $\sqrt{2}T=2\pi$, donc pour $T=\sqrt{2}\pi$.
- 2. La fonction f est dérivable comme composée de fonctions usuelles. On a : $\forall x \in \mathbb{R}, \ f'(x) = -\sin(x) \sqrt{2}\sin(\sqrt{2}x), \ \text{donc} \ f''(x) = -\cos(x) 2\cos(\sqrt{2}x).$
- 3. Par hypothèse : $\forall x \in \mathbb{R}$, f(x+T) = f(x). Donc en dérivant cette égalité : $\forall x \in \mathbb{R}$, f'(x+T) = f'(x), puis f''(x+T) = f''(x). Donc f' et f'' sont T-périodiques.
- 4. Comme f et f'' sont T-périodiques, on a : $f(T) = f(0) = \cos(0) + \cos(0) = 2 \text{ et } f''(T) = f''(0) = -\cos(0) 2\cos(0) = -3.$
- 5. On a $\cos(T) + \cos(\sqrt{2}T) = 2$ et $-\cos(T) 2\cos(\sqrt{2}T) = -3$, donc en sommant : $-\cos(\sqrt{2}T) = -1$, donc $\cos(\sqrt{2}T) = 1$. Donc $\cos(T) = 2 \cos(\sqrt{2}T) = 2 1 = 1$.
- 6. Comme $\cos(T)=1$, on a $T=2k\pi$ où $k\in\mathbb{Z}$. De même, comme $\cos(\sqrt{2}T)=1$, on a $T=\sqrt{2}l\pi$ où $l\in\mathbb{Z}$. Or $T\neq 0$, donc par quotient : $1=\sqrt{2}\frac{k}{l}$, donc $\sqrt{2}\in\mathbb{Q}$, ce qui est faux. Donc par l'absurde, f n'est pas périodique.

Problème.

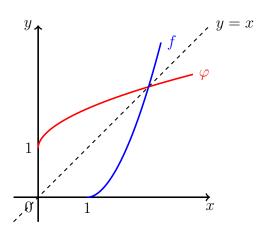
- I. (a) Soit $x \in \mathbb{R}$. Le nombre f(x) est défini lorsque $x \neq 0$, donc $D_f = \mathbb{R}^*$. Sur ce domaine, comme la fonction f est un quotient de fonctions polynomiales, f est dérivable.
 - (b) On a : $\forall x \in \mathbb{R}^*$, $f'(x) = \frac{(3x^2-2x-1)\times x (x^3-x^2-x+1)\times 1}{x^2} = \frac{2x^3-x^2-1}{x^2}$. En particulier, f'(1) = 0, donc la courbe de f a pour tangente en 1 la droite d'équation cartésienne y = f'(1)(x-1) + f(1) = 0; c'est-à-dire l'axe des abscisses.
 - (c) Soit $x \in \mathbb{R}^*$. Le trinôme $2x^3 x^2 1$ a pour racine évidente 1, donc $2x^3 x^2 1 = (x 1)(2x^2 + x + 1)$, où $2x^2 + x + 1$ a pour discriminant -7 et pour coefficient dominant 2 > 0, donc : $\forall x \in \mathbb{R}, \ 2x^2 + x + 1 > 0$. Donc $f'(x) > 0 \Leftrightarrow x > 1$.

x	$-\infty$		0_	0+		1		$+\infty$
f'(x)		_			_		+	
	$+\infty$			$+\infty$				$+\infty$
f		×			V		7	
			$-\infty$			0		

(d)



- (e) Comme f est continue et strictement croissante sur $[1, +\infty[$, d'après le théorème de la bijection continue, f réalise une bijection de $[1, +\infty[$ dans $J = \left| f(1), \lim_{x \to +\infty} f(x) \right| = [0, +\infty[$.
- (f) D'après le théorème de la bijection continue, la fonction $\varphi: [0, +\infty[\to [1, +\infty[$ est continue et strictement croissante. On sait également que φ est dérivable lorsque f' ne s'annule pas, c'est-à-dire sur $]0, +\infty[$.



- II. (a) Soit $x \in \mathbb{R}$. Le nombre g(x) est défini lorsque $f(x) \in [0, +\infty[$, c'est-à-dire lorsque $x \le -1$ ou x>0. Donc $D_g=]-\infty,-1]\cup]0,+\infty[$. Sur $[1,+\infty[$, comme φ est la réciproque de f, on a : $\forall x \in [1, +\infty[, g(x) = x.$
 - (b) Comme g est la composée de fonctions continues, g est continue sur D_g . De plus, g est dérivable lorsque f est dérivable et que f(x) appartient au domaine de dérivabilité de φ , donc sur $I=D_g\setminus$ $\{\pm 1\} =]-\infty, -1[\cup]0, 1[\cup]1, +\infty[.$
 - (c) Comme, sur $I, g' = f' \cdot \varphi' \circ f, g'$ est de même signe que f'. D'où le tableau :

x	$-\infty$		-1	0		1		$+\infty$
g'(x)		_			_		+	
	$+\infty$			$+\infty$				$+\infty$
g		V			\searrow		7	
			1			1		

- i. Comme y=g(x), on a $f(y)=f(g(x))=f\circ \varphi(f(x))$, donc, comme $f\circ \varphi=\mathrm{Id}_{\mathbb{R}_+}$ et que $f(x)\in\mathbb{R}_+, f(y)=f(x)$. Donc : $\frac{y^3-y^2-y+1}{y}=\frac{x^3-x^2-x+1}{x}$, d'où l'égalité voulue. (d)
 - ii. Comme $y = g(x), y \in g(D_g)$, donc $y \ge 1$. Donc $y \ne x$.
 - iii. Si x > 1, on sait que q(x) = x,
 - Si x < 1, on note y = g(x). D'après les questions précédentes, on a : $xy^2 + (x^2 x)y 1 = 0, \text{ donc}: y = \frac{x x^2 \pm \sqrt{(x x^2)^2 + 4x}}{2x}. \text{ Or, d'après le tableau}$ de variations, $y \ge 1$. Comme le produit de ces racines est égal à $-\frac{1}{x}$:

— Si
$$x \ge 0$$
, alors $g(x) = \frac{x - x^2 + \sqrt{(x - x^2)^2 + 4x}}{2x}$, seule racine positive,
— Si $x \le -1$, alors $g(x) = \frac{x - x^2 - \sqrt{(x - x^2)^2 + 4x}}{2x}$, seule racine ≥ 1 .

— Si
$$x \le -1$$
, alors $g(x) = \frac{x - x^2 - \sqrt{(x - x^2)^2 + 4x}}{2x}$, seule racine ≥ 1 .

(e) Soit $x \in [0, 1[$. On a :

$$\frac{g(x)-1}{x-1} = \frac{1}{x-1} \left(\frac{x-x^2 + \sqrt{x^4 - 2x^3 + x^2 + 4x}}{2x} - 1 \right)$$

$$= -\frac{1}{2} + \frac{\sqrt{x^4 - 2x^3 + x^2 + 4x} - 2x}{2x(x-1)}$$

$$= -\frac{1}{2} + \frac{x^4 - 2x^3 + x^2 + 4x - 4x^2}{2x(x-1)(\sqrt{x^4 - 2x^3 + x^2 + 4x} + 2x)}$$

$$= -\frac{1}{2} + \frac{x(x-1)(\sqrt{x^4 - 2x^3 + x^2 + 4x} + 2x)}{2x(x-1)(\sqrt{x^4 - 2x^3 + x^2 + 4x} + 2x)}$$

$$= -\frac{1}{2} + \frac{x^2 - x - 4}{2(\sqrt{x^4 - 2x^3 + x^2 + 4x} + 2x)}.$$

Par passage à la limite, on a donc : $\frac{g(x)-g(1)}{x-1} \xrightarrow[x\to 1_-]{} -1$, donc g est dérivable à gauche en 1, de nombre dérivé à gauche -1. Or on sait que le nombre dérivé de g à droite en 1 est 1 (puisque g(x)=x à droite de 1). Donc g n'est pas dérivable en 1.

(f)

