Corrigé du DS 2 CCINP+ (4 heures).

La rédaction, l'argumentation et la présentation matérielle entrent dans une part significative de la notation; vous devrez aussi respecter la terminologie et les règles d'usage en vigueur. Les résultats numériques seront encadrés et simplifiés.

Tout manquement à ces consignes sera sanctionné.

......

PROBLEME 1 : Racine cubique d'une matrice

Présentation générale

Dans tout l'exercice, on considère un entier $n \in \mathbb{N}^*$.

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ admet une racine cubique s'il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $A = B^3$. Dans ce cas, on dit que B est une racine cubique de A.

Partie I - Étude d'exemples

Dans cette partie, on considère notamment la matrice :

$$A = \begin{pmatrix} 4 & -12 \\ -1 & 5 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$

Nous allons déterminer toutes les racines cubiques de la matrice A.

1. Justifier qu'il existe une matrice inversible $P \in \mathcal{M}_2(\mathbb{R})$, qu'il n'est pas nécessaire de déterminer explicitement, telle que $A = PDP^{-1}$ avec :

$$D = \begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$

Solution:

On montre que A est diagonalisable en évaluant son polynôme caractéristique.

Comme $\chi_A = X^2 - 9X + 8 = (X - 1)(X - 8)$, celui-ci étant scindé sur \mathbb{R} et à racines simples, A est bien diagonalisable et son spectre est l'ensemble $\{1,8\}$. De ceci il résulte bien l'existence d'une matrice $P \in GL_2(\mathbb{R})$ telle que $A = PDP^{-1}$

2. Montrer qu'une matrice $B \in \mathcal{M}_2(\mathbb{R})$ est une racine cubique de A si et seulement si $\Delta = P^{-1}BP$ est une racine cubique de D.

Solution:

 $B^3=A$ signifie que $B^3=A=PDP^{-1}$ donc que $(P^{-1}BP)^3=D$ soit Δ racine cubique de D. Réciproque similaire

3. Soit $\Delta \in \mathcal{M}_2(\mathbb{R})$ une racine cubique de D. Montrer que les matrices D et Δ commutent, puis en déduire que la matrice Δ est diagonale.

Solution:

 $D\Delta = D^4 = \Delta D$ donc ces deux matrices commutent.

Posons
$$\Delta = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. De $D\Delta = \Delta D$ on déduit $b = 8b$ et $8c = c$ soit $b = c = 0$ donc que Δ est bien

diagonale■

4. Déterminer l'ensemble des racines cubiques de D, puis l'ensemble des racines cubiques de A. On pourra se contenter de décrire ce dernier ensemble en fonction de P et de Δ .

Solution:

 Δ est une racine cubique de D équivaut donc à dire qu'il existe deux réels a,d tels que $\Delta = diag(a,d)$ et $\Delta^3 = diag(1,8)$ d'après ce qui précède. Ainsi D possède une seule racine cubique diag(1,2)

Par 2. on en déduit que A possède une unique racine cubique à savoir $Pdiag(1,2)P^{-1}$

5. (Un exemple plus général)

Soit S une matrice de symétrie de taille $n \ge 1$ et à coefficients réels.

Déterminer une racine cubique de S.

Solution:

Comme $S^2 = I_n$ alors $S^3 = S$ et S est une racine cubique d'elle même

Partie II - Un peu de trigonométrie

On fixe également un réel $\theta \in \mathbb{R}$ et on note :

$$M(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$

5. Prouver que, pour les réels α et β , $M(\alpha)M(\beta) = M(\alpha + \beta)$?

Solution:

Simple calcul utilisant les formules d'addition des fonctions trigonométriques

6. En déduire une racine cubique de la matrice M.

Solution:

De 5. on déduit que $M(\frac{\theta}{3})$ est une racine cubique de $M(\theta)$

7. Y-en-a-t-il d'autres?

Solution:

Oui. Par exemple $M(\frac{\theta+2\pi}{3})$

Partie III - Racines cubiques et diagonalisation

Dans toute cette partie, on considère une matrice diagonalisable $A \in \mathcal{M}_n(\mathbb{R})$. On note $\lambda_1, \ldots, \lambda_d \in \mathbb{R}$ les valeurs propres deux à deux distinctes de la matrice A.

III. 1 - Existence d'une racine cubique polynomiale

8. Soient $\lambda \in \mathbb{R}$ et $p \in \mathbb{N}^*$. Déterminer une racine cubique de la matrice :

$$H_p(\lambda) = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda \end{pmatrix} \in \mathcal{M}_p(\mathbb{R})$$

Solution:

Il est assez évident qu'une telle racine cubique est $H_p(\sqrt[3]{\lambda})$

9. Déduire de la question précédente que la matrice A admet une racine cubique. On pourra remarquer que A est semblable à une matrice diagonale par blocs où les blocs sur la diagonale sont de la forme $H_p(\lambda)$ avec $(p,\lambda) \in \mathbb{N}^* \times \mathbb{R}$.

Solution:

Il existe une matrice inversible P telle que $A = Pdiag(H_{p_1}(\lambda_1), ..., H_{p_d}(\lambda_p))P^{-1}$, où p_i désigne la multiplicité de λ_i pour $1 \geq i \geq d$.

Dès lors avec la question précédente et la partie I adaptée on déduit que :

$$\boxed{Pdiag(H_{p_1}(\sqrt[3]{\lambda_1}),....,H_{p_d}(\sqrt[3]{\lambda_p}))P^{-1}} \text{ est une racine cubique de } A\blacksquare$$

III. 2 - Réduction d'une racine cubique

Dans cette sous-partie, on suppose de plus que la matrice A est inversible et on considère le polynôme :

$$Q(X) = \prod_{k=1}^{d} \left(X^3 - \lambda_k \right)$$

10. Montrer que les nombres $\lambda_1, \ldots, \lambda_d$ sont non nuls.

Solution:

A étant inversible, 0 n'en est pas une valeur propre

11. Soit $\lambda \in \mathbb{C}^*$ que l'on écrit sous la forme $\lambda = \rho \mathbf{e}^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$. Montrer que l'équation $z^3 = \lambda$ d'inconnue $z \in \mathbb{C}$ admet exactement trois solutions.

Solution:

Les trois solutions sont les
$$\sqrt[3]{\rho}e^{i\frac{\theta+2k\pi}{3}}$$
, où $k \in [1,3]$

12. En déduire que le polynôme Q est scindé à racines simples sur \mathbb{C} .

Solution:

Pour tout $k \in [1, d]$, $X^3 - \lambda_k$ est scindé en vertu de 10. et 11.

Par ailleurs ces polynômes pris deux à deux admettent des racines différentes donc Q est bien scindé sur $\mathbb C$ et à racines simples \blacksquare

13. Déduire des questions précédentes que si B est une racine cubique de A, alors la matrice B est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

Solution:

Puisque
$$Q(B) = P(A)$$
, où $P = \prod_{i=1}^{d} (X - \lambda_i)$.

Comme P est (cf cours) un polynôme annulateur de A, il en résulte que B est diagonalisable sur \mathbb{C} puisque Q en est un polynôme annulateur à racines simples

PROBLEME 2 : Matrices de rang 1

Dans cette partie, A désigne une matrice de $M_n(\mathbb{R})$ de rang égal à 1.

1. On note $C \in M_{n,1}(\mathbb{R})$ la première colonne non nulle de A. Démontrer qu'il existe une matrice ligne $L \in M_{1,n}(\mathbb{R})$ non nulle telle que $A = C \times L$.

Solution:

Il existe des réels $a_1, ..., a_n$ non tous nuls tels que $\forall i \in [1, n], C_i(A) = a_i C$.

- Dès lors en posant $L = (a_1.....a_n)$, on a bien $A = CL \blacksquare$
- 2. Calculer le réel $L \times C$ et en déduire que $A^2 = tr(A)A$.

Solution:

On notera (cf Q1) que
$$A = (c_i a_j)$$
, où on a posé $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$.

Par ailleurs
$$LC = \sum_{i=1}^{n} a_i c_i = tr(A)$$

Enfin $A^2 = \overline{CLCL} = C(LC)L = tr(A)CL = tr(A)A$ par associativité du produit matriciel

3. Déterminer le polynôme caractéristique de A.

Solution:

Le rang de A valant 1, la dimension de Ker(A) est de dimension n-1.

Donc 0 en tant que vp de A possède une multiplicité au moins égale à cette dimension et cela montre qu'il existe un réel a tel que :

$$\chi_A = X^{n-1}(X-a) = X^n - aX^{n-1}$$
 et, grâce au cours $\chi_A = X^n - tr(A)X^{n-1}$

4. Établir que

A est diagonalisable
$$\iff$$
 $tr(A) \neq 0$.

Solution:

Si $tr(A) \neq 0$ Q.2 fournit en X(X-a) un polynôme scindé sur $\mathbb R$ et à racines simples qui est de plus polynôme annulateur de A. Ainsi A est dz \square

Si tr(A) = 0, par Q.3, A est nilpotente et non nulle (car de rang 1) donc A n'est pas dz. Ceci prouve l'implication inverse

On note désormais u l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

5. On suppose que $Im(u) \cap Ker(u) \neq \{0_{\mathbb{R}^n}\}.$

Justifier que $Im(u) \subset Ker(u)$, puis qu'il existe une base de \mathbb{R}^n dans laquelle u est représenté par la matrice:

Solution:

Cette intersection n'étant pas réduite au vecteur nul, elle est au moins de dimension 1 et de plus incluse dans l'image de u qui possède la même dimension. Ainsi $Ker(u) \cap Im(u) = Im(u)$. Ceci prouve que $Im(u) \subset Ker(u)\square$

Prenons x_2 dirigeant Im(u) et posons x_1 comme étant un antécédent de x_2 (cet antécédent n'appartient pas bien sûr à Ker(u)).

On complète x_2 avec $x_3,...,x_n$ pour obtenir une base de Ker(u).

Dans la base $(x_1, ..., x_n)$ la matrice de u est bien de la forme souhaitée

6. On suppose que $Im(u) \cap Ker(u) = \{0_{\mathbb{R}^n}\}.$

Démontrer qu'il existe une base de \mathbb{R}^n dans laquelle u est représenté par la matrice:

où a est un réel non nul.

Solution:

De part la formule du rang cette fois, $\mathbb{R}^n = Im(u) \oplus Ker(u)$. Il suffit alors de considérer une base $(y_1, ..., y_n)$ adaptée à cette somme directe pour avoir la matrice désirée puisque $u(y_1) \in Im(u) = Vect(y_1)$ soit l'existence d'un réel a tel que $u(y_1) = ay_1$ ($a \neq 0$ sinon matrice nulle)

7. Conclure que dans $M_n(\mathbb{R})$ deux matrices de rang 1 sont semblables si et seulement si elles ont la même trace.

Solution:

Une seule implication mérite de l'attention.

On se donne deux matrices A et B de $M_n(\mathbb{R})$, de rang 1 et de même trace.

Montrons qu'elles sont semblables en considérant f_A et f_B les endomorphismes canoniquement associés à ces matrices.

Si tr(A) = tr(B) = 0 Q.5 montre que f_A et f_B sont représentés par une même matrice donc $A \sim B$. Sinon Q.6 prouve la même chose

PROBLEME 3 : Étude d'un endomorphisme matriciel

Présentation générale

Dans tout l'exercice, on considère un entier $n \in \mathbb{N}^*$.

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on note $\varphi_A : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ définie par $\varphi_A : M \mapsto AM$. En particulier, on remarque qu'en notant O_n la matrice nulle de $\mathcal{M}_n(\mathbb{C})$ et I_n la matrice d'identité de $\mathcal{M}_n(\mathbb{C})$, alors φ_{O_n} est l'application nulle de $\mathcal{M}_n(\mathbb{C})$ et φ_{I_n} est l'application identité de $\mathcal{M}_n(\mathbb{C})$.

L'objectif de cet exercice est d'étudier quelques propriétés de l'application φ_A .

Partie I - Généralités

- Q1. Montrer pour tout $A \in \mathcal{M}_n(\mathbb{C})$ que l'application φ_A est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$.
- Q2. Montrer pour tout $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ que $\varphi_A \circ \varphi_B = \varphi_{AB}$.
- Q3. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Déduire de la question précédente que φ_A est un isomorphisme si et seulement si la matrice A est inversible. Indication : si φ_A est un isomorphisme, on pourra considérer un antécédent par φ_A de la matrice identité de $\mathcal{M}_n(\mathbb{C})$.

Solution:

Si $A \in Gl_n(\mathbb{C})$ alors $\phi_A \circ \phi_{A^{-1}} = \phi_{A^{-1}} \circ \phi_A = \phi_{I_n} = id_{M_n(\mathbb{C})}$.

Ceci montre que ϕ_A est un isomorphisme de $M_n(\mathbb{C})\square$

Inversement on considère, comme suggéré, l'antécédent de I_n par ϕ_A que l'on note B. Par conséquent $AB = I_n$, ce qui montre que $A \in Gl_n(\mathbb{C}) \blacksquare$

Partie II - Étude d'un exemple

Dans cette partie uniquement, on suppose que n=2. On considère un nombre $a\in\mathbb{C}$ et la matrice :

$$A = \begin{pmatrix} 1 & 1 \\ 0 & a \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}).$$

Q4. Déterminer une condition nécessaire et suffisante sur le nombre $a \in \mathbb{C}$ pour que la matrice A soit diagonalisable.

Solution:

Si $a \neq 1$, le spectre de A contenant deux éléments distincts a et 1, A est diagonalisable

Si a=1, le spectre de A est le singleton $\{1\}$ et A n'est pas scalaire. Ce qui montre la réciproque.

$$A dz \iff a \neq 1$$

Q5. Déterminer la matrice de φ_A dans la base $C = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$ de $\mathcal{M}_2(\mathbb{C})$.

Solution:

Après calcul et en notant M cette matrice (carrée de taille 4), on trouve $M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{pmatrix}$

Q6. En déduire les valeurs propres de φ_A , puis déterminer la dimension de chaque sous-espace propre de

 φ_A en fonction de $a \in \mathbb{C}$. Solution :

En utilisant M, il vient $Sp(A) = \{1, a\}$

Pour les dimensions on passe aux rangs.

On trouve aisément $rg(M - I_4) = 2$ et $rg(M - aI_4) = 2$. Donc les espaces propres sont aussi de dimension

Q7. Déterminer une condition nécessaire et suffisante sur $a \in \mathbb{C}$ pour que φ_A soit diagonalisable.

Solution:

Si a=1, le spectre de A est réduit à $\{1\}$ et A n'est pas scalaire donc A n'est pas dz \square

Si $a \neq 1$ $dim(E_1(A) + dimE_a(A) = 4$ donc A est $dz \square$

$$A dz \iff a \neq 1$$

Partie III - Réduction de φ_A si A est diagonalisable

Dans cette partie, on considère une matrice $A \in \mathcal{M}_n(\mathbb{C})$. Nous allons étudier les propriétés liant les éléments propres de la matrice A et ceux de l'endomorphisme φ_A .

Q8. Montrer pour tout $k \in \mathbb{N}$ que $\varphi_A^k = \varphi_{A^k}$.

Solution:

Q.2 et récurrence■

Q9. En déduire pour tout polynôme $P \in \mathbb{C}[X]$ que $P(\varphi_A) = \varphi_{P(A)}$.

Solution:

Propriétés opérations sur les matrices avec la question précédente

Q10. Rappeler la caractérisation de la diagonalisabilité d'une matrice ou d'un endomorphisme à l'aide d'un polynôme annulateur. En déduire que la matrice A est diagonalisable si et seulement si l'endomorphisme φ_A est diagonalisable.

Solution:

Q.9 montre que A et ϕ_A ont les mêmes polynômes annulateurs d'où l'équivalence désirée

Q11. On note χ_A le polynôme caractéristique de A. Montrer que $\chi_A(\varphi_A)$ est l'endomorphisme nul. En déduire une inclusion entre l'ensemble des valeurs propres de A et l'ensemble des valeurs propres de φ_A , puis que la matrice A et l'endomorphisme φ_A ont les mêmes valeurs propres.

Solution:

 χ_A polynôme annulateur de A (Cayley-Hamilton) implique la même chose pour ϕ_A et ainsi le spectre de cet endomorphisme est inclus dans l'ensemble des zéros de χ_A qui est exactement le spectre de A.

On trouve l'inclusion inverse en partant du polynôme caractéristique de ϕ_A

Q12. Soit $\lambda \in \mathbb{C}$ une valeur propre de A. Montrer qu'une matrice $M \in \mathcal{M}_n(\mathbb{C})$ est dans le sous-espace propre $E_{\lambda}(\varphi_A)$ de φ_A pour la valeur propre λ si et seulement si chaque colonne de la matrice M est dans le sous-espace propre $E_{\lambda}(A)$ de la matrice A pour la valeur propre λ .

Solution:

On traduit $AM = \lambda M$ en raisonnant sur les colonnes. Ce qui équivaut à $AC_i(M) = \lambda C_i(M)$ et prouve l'assertion désirée

On déduit directement de la question précédente que pour toute valeur propre $\lambda \in \mathbb{C}$ de la matrice A, l'application Ψ qui à toute matrice de $\mathcal{M}_n(\mathbb{C})$ associe le n-uplet de ses colonnes :

$$\Psi: \left(\begin{array}{ccc} m_{1,1} & \cdots & m_{1,n} \\ \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,n} \end{array}\right) \mapsto \left(\left(\begin{array}{c} m_{1,1} \\ \vdots \\ m_{n,1} \end{array}\right), \dots, \left(\begin{array}{c} m_{1,n} \\ \vdots \\ m_{n,n} \end{array}\right)\right)$$

est un isomorphisme du sous-espace propre de $E_{\lambda}(\varphi_A)$ sur $E_{\lambda}(A)^n$.

Q13. Dans le cas où la matrice A est diagonalisable, déduire des résultats de cette partie une expression du déterminant et de la trace de φ_A en fonction du déterminant et de la trace de A.

Solution:

Posons $Sp(A) = \{\lambda_1, ..., \lambda_s\}$, où les λ_i deux à deux différentes et on posera $n_i = \dim(E_{\lambda_i}(A)$ (notez que la diagonalisabilité de A entraı̂ne que $\sum_{i=1}^s n_i = n$.

A étant dz, ϕ_A l'est aussi (Q10.) donc $M_n(\mathbb{C}) = \bigoplus_{\lambda \in Sp(A)} E_{\lambda}(\phi_A)$.

Ainsi dans une base adaptée ϕ_A est représenté par $diag(\lambda_1,..\lambda_1,\lambda_2,...,\lambda_s,...,\lambda_s)$, où chaque λ_i apparaît nn_i

fois (cf préambule à cette question). Dès lors $tr(\phi_A) = n \sum_{i=1}^s n_i \lambda_i = ntr(A)$ et $\det(\phi_A) = (\det(A)^n) \blacksquare$

FIN