Corrigé partiel du TD 8 : Réduction (II)

Réchauffé 1 Montrer, par l'absurde, qu'il n'existe pas de matrice
$$X \in M_3(\mathbb{C})$$
 telle que $X^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

Réchauffé 2 Prouver, en la considérant comme élément de $M_n(\mathbb{C})$, que la seule matrice $M \in M_n(\mathbb{R})$ vérifiant $M^3 = I_n$ et tr(M) = n est la matrice unité de taille n.

Exercice (*) 1 Réduire la matrice
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$
. Est-elle semblable à $B = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 4 & 1 \\ -1 & -2 & 1 \end{pmatrix}$?

Exercice (*) 2 Prouver que la matrice
$$N = \begin{pmatrix} 1 & j & j^2 \\ j & j^2 & 1 \\ j^2 & 1 & j \end{pmatrix}$$
 est nilpotente. En préciser les éléments propres.

Etablir que N est semblable à $T = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice $(\star\star)$ 1 Soit $A \in M_3(\mathbb{R})$ telle que $Sp_{\mathbb{C}}(A) = \{1,2\}$ et tr(A) = 4.

Exprimer A^{2025} en fonction de I_3 , A et A^2 .

 $Cette\ expression\ est\text{-}elle\ n\'ecessairement\ unique?}$

Solution:

Non pour l'unicité. Prenons A=diag(1,1,2) alors $A^{2025}=(2^{2025}-1)A+(2-2^{2025})I_3$ mais aussi $A^{2025}=(2^{2024}-1)A^2+(2-2^{2024})A\blacksquare$

Exercice (**) 2 Soit D = diag(1, 2,n).

Combien y-a-t-il de matrices de $M_n(\mathbb{R})$ semblables à D et commutant avec D?

Solution:

Comme expliqué et montré en classe une matrice qui commute avec D est nécessairement diagonale. On est donc ramené à dénombrer les matrices diagonales dont les coefficients diagonaux sont les éléments de $[\![1,n]\!]$ (Spectre = invariant de similitude). On trouve n! telles matrices (nombre de permutations possibles de la diagonale de D)

Exercice $(\star \star \star)$ 1 On se donne $A \in M_n(\mathbb{R})$ diagonalisable.

La matrice
$$M = \begin{pmatrix} 4A & -2A \\ 3A & -A \end{pmatrix}$$
 est-elle diagonalisable?

Exercice $(\star \star \star \star)$ 1 (Matrices compagnons ou de Froebenius)

Soient
$$n \ge 2$$
 et $P = X^n + \sum_{k=0}^{n-1} a_k X^k$. On pose.

Exercice (****) 1 (Matrices compagnons ou de Froebenius)

Soient
$$n \geq 2$$
 et $P = X^n + \sum_{k=0}^{n-1} a_k X^k$. On pose :

$$C_P = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & \ddots & \ddots & \vdots & -a_1 \\ & \ddots & \ddots & 0 & \vdots \\ & & & 1 & -a_{n-1} \end{pmatrix} \in M_n(\mathbb{C}) \text{ (matrice compagnon de } P).$$

a) Déterminer suivant a_0 le rang de C_P .

- b) En examinant le rang de $C_P \lambda I_n$ et sans chercher à déterminer valeur ou vecteur propre, prouver que tout sous-espace propre de C_P est de dimension 1.
- c) En le calculant, prouver que P est le polynôme caractéristique de C_P .
- d) Trouver une CNS portant sur P pour que C_P soit diagonalisable.

Exercice $(\star \star \star \star)$ 2 Soit $A \in M_n(\mathbb{C})$ telle que $tr(A^k) = 0$ pour tout $k \in [1, n]$. Que dire de A?

Solution:

On va montrer que le spectre de A est réduit à $\{0\}$ (autrement dit que A est nilpotente.).

A étant tz $A \sim T$, avec T triangulaire de diagonale $t_1, ...t_1, t_2...t_2,t_s...t_s, 0, ...0$ chaque t_i apparaissant n_i fois et 0 r fois (ces entiers pouvant être nuls). On suppose les $t_i \neq 0$ et distincts deux à deux.

On a donc $\chi_A = X^r \prod_{i=1}^{3} (X - t_i)^{n_i}$ et on va prouver que tous les n_i son nuls. Ce qui montrera que 0 est la seule vp de A.

La similitude A et T entraı̂ne celle de A^k et T^k pour tout entier naturel k.

On suppose donc $s \geq 1$ (sinon fini).

Ainsi pour tout $k \in [1, s]$: $0 = tr(A^k) = tr(T^k) = \sum_{i=1}^s n_i t_i^k$. Matriciellement ceci se traduit par

$$M\begin{pmatrix} n_1\\ n_2\\ \vdots\\ n_s \end{pmatrix} = 0_{s,1}$$
, où $\det(M) = (\prod_{i=1}^s t_i)V(t_1,...,t_s) \neq 0$. Cela implique, via l'inversibilité de M , que

tous les n_i sont nuls comme attendu