EXERCICE 2

Dans tout l'exercice, on considère un entier $n \geq 2$ et on note $E = \mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels.

Si M est une matrice de E, on note M^T la matrice transposée de M.

On rappelle la définition des ensembles $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$:

$$S_n(\mathbb{R}) = \{ M \in E ; M^T = M \} \text{ et } \mathcal{A}_n(\mathbb{R}) = \{ M \in E ; M^T = -M \}$$

On note B et C les matrices :

$$B = \begin{pmatrix} -1 & 4 & -3 \\ -3 & 6 & -3 \\ -2 & 2 & 0 \end{pmatrix} \quad \text{et} \quad C = \begin{pmatrix} -1 & -3 & -2 \\ 4 & 6 & 2 \\ -3 & -3 & 0 \end{pmatrix}$$

On remarque que B et C vérifient la relation : $C = B^T$.

Partie I - Étude de la matrice B

- **Q7.** a) Déterminer ker(B).
 - **b)** Montrer que *B* est diagonalisable.
 - c) Déterminer une matrice D diagonale et une matrice P inversible vérifiant $B = PDP^{-1}$.
- **Q8.** a) Montrer que B et C sont des matrices semblables.
 - **b)** Déterminer l'expression en fonction de P et de P^T , d'une matrice inversible R telle que :

$$C = R^{-1}BR$$

Q9. L'objectif de cette question est de déterminer toutes les matrices M de $\mathcal{M}_3(\mathbb{R})$ solutions de l'équation $M^2=B$.

On pose $N = P^{-1}MP$, où P est la matrice déterminée dans la question **Q7**.

- a) Montrer que $M^2 = B \iff N^2 = D$.
- **b)** Soit N vérifiant $N^2 = D$. Montrer que ND = DN. Déterminer les matrices N de $\mathcal{M}_3(\mathbb{R})$ vérifiant l'équation ND = DN. En déduire les solutions de l'équation $N^2 = D$.
- c) Résoudre l'équation $M^2 = B$, les expressions des solutions seront données en fonction des solutions de $N^2 = D$ et de P. Combien obtient-on de solutions?