TD. A4 Calculs de limites

Exercices de cours _____

(1) Soit (u_n) la suite définie par $u_0 = 0$ et :

$$\forall n \in \mathbb{N} \qquad u_{n+1} = \sqrt{6 + u_n}$$

- a. Démontrer que (u_n) est bien définie.
- b. Démontrer que (u_n) est majorée et croissante.
- c. Démontrer que (u_n) et convergente et donner sa limite.
- d. On suppose maintenant que $u_0 = 4$. Démontrer que la suite (u_n) tend vers $+\infty$.
- (2) Démontrer l'équivalence :

$$1 - \cos u \sim \frac{u^2}{2}$$

(3) Démontrer que pour tout $\alpha \in \mathbb{R}$:

$$(1+x)^{\alpha} = 1 + \alpha x + o(x)$$

(4) Calculer les limites suivantes.

a.
$$\lim_{x \to +\infty} \frac{3 - x^3}{4x^2 - 2x + 1}$$

b.
$$\lim_{x \to +\infty} \frac{2x}{x\sqrt{x} + 5}$$

c.
$$\lim_{x \to +\infty} \frac{\sqrt{x} - \ln x}{\sqrt{x} + \ln x}$$

a.
$$\lim_{x \to +\infty} \frac{3 - x^3}{4x^2 - 2x + 1}$$
 b. $\lim_{x \to +\infty} \frac{2x}{x\sqrt{x} + 5}$ c. $\lim_{x \to +\infty} \frac{\sqrt{x} - \ln x}{\sqrt{x} + \ln x}$ d. $\lim_{x \to -\infty} \frac{(3x^3 + x - 2)^2}{(x - 1)^6}$

e.
$$\lim_{x \to +\infty} \frac{e^x}{3x^5 - 1}$$

f.
$$\lim_{x \to +\infty} \frac{e^{-x}}{3x^5 - 1}$$

g.
$$\lim_{x \to 1} \left(\frac{x-1}{x+1} \right)^{(x-1)}$$
 h. $\lim_{x \to \frac{\pi}{6}} \frac{\cos(2x + \frac{\pi}{6})}{\sin(5x + \frac{\pi}{6})}$

h.
$$\lim_{x \to \frac{\pi}{6}} \frac{\cos(2x + \frac{\pi}{6})}{\sin(5x + \frac{\pi}{6})}$$

i.
$$\lim_{x \to +\infty} \left(\frac{x}{x+1} \right)^{\frac{x^2}{x+1}}$$

(5) Étudier le comportement à l'infini des suites suivantes.

$$a_n = \frac{5^n - 6^n}{5^n - 4^n}$$

$$b_n = \frac{4^n}{n^3 - n!}$$

$$c_n = \frac{n - 2^n}{e^n}$$

$$d_n = n(\ln(n+2) - \ln n)$$

$$e_n = (2n)^{\sin\frac{1}{n}}$$

$$f_n = n\left(\sqrt[n]{2} - 1\right)$$

$$g_n = \sqrt[n]{3 + \sin n}$$
 $h_n = \frac{n! \ln n}{\sqrt{n} e^n}$

$$h_n = \frac{n! \ln n}{\sqrt{n} e^n}$$

Travaux dirigés

 $|\mathbf{1}|$ Soit (u_n) la suite définie par $u_0=1$ et

$$\forall n \in \mathbb{N}$$
 $u_{n+1} = f(u_n)$

où f est la fonction définie sur $\mathbb{R} - \left\{-\frac{1}{4}\right\}$ par :

$$f(x) = \frac{5x-1}{4x+1}$$
.

- a. Étudier les variations de f.
- b. Démontrer que (u_n) est bien définie et incluse dans l'intervalle $\left[\frac{1}{2},1\right]$.
- c. Démontrer que (u_n) converge et calculer sa li-
- d. Soit maintenant v_n la suite définie par :

$$\forall n \in \mathbb{N} \qquad v_n = \frac{1}{u_n - \frac{1}{2}}.$$

Démontrer que v_n est bien définie et exprimer v_{n+1} en fonction de v_n .

- e. En déduire le terme général de la suite (u_n) . Démontrer de nouveau qu'elle converge et retrouver sa limite.
- f. Donner un équivalent de $u_n \ell$, où $\ell = \lim u_n$.

2 On définit la suite $(u_n)_{n\in\mathbb{N}}$ en posant $u_0=1$ et pour tout $n \in \mathbb{N}$: $u_{n+1} = 1 + \frac{6}{u^n}$.

On pose $f(x) = 1 + \frac{6}{x}$.

- a. Justifier que l'intervalle $I = [u_0, u_1]$ est stable par f, et en déduire que la suite (u_n) est bien définie et bornée.
- b. Décrire les variations de la suite (u_n) .
- c. Décrire les variations de $g = f \circ f$.

En déduire que les suites extraites (u_{2n}) et (u_{2n+1}) sont convergences.

- d. Démontrer que la suite (u_n) est convergente et donner sa limite.
- $|\mathbf{3}|$ Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par une valeur $u_0 \geqslant 1 \text{ et}$:

$$\forall n \in \mathbb{N} \qquad u_{n+1} = \sqrt{\frac{u_n^2 + 7u_n}{2}} - 1$$

Soit
$$f: x \mapsto \sqrt{\frac{x^2+7x}{2}} - 1$$
 et $g: x \mapsto f(x) - x$.

- a. Décrire les variations de f et de g sur \mathbb{R}_+^* , et résoudre l'équation g(x) = 0.
- b. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie, convergente, et donner sa limite.
- c. Que peut-on dire si $u_0 \in [0, 1]$?

4 Étudier les limites des suites suivantes.

a.
$$u_n = \sqrt{(n+a)(n+b)} - n$$
 $(a,b) \in (\mathbb{R}_+^*)^2$

b.
$$u_n = \frac{a}{n} \left\lfloor \frac{n}{b} \right\rfloor$$
 $v_n = \frac{n}{a} \left\lfloor \frac{b}{n} \right\rfloor$ $(a, b) \in (\mathbb{R}_+^*)^2$ $(a, b) \in (\mathbb{R$

$$c. u_n = \left(\frac{1}{n}\right)^{\frac{1}{\ln n}}$$

$$d. u_n = \sqrt[n]{1 + \cos^2 n}$$

e.
$$u_n = \left| \frac{(n-1)^2}{n^2 - 3} \right|$$

f.
$$u_n = \sin n \sin \frac{1}{n}$$

g.
$$u_n = \frac{n - \sqrt{n^2 + 1}}{n - \sqrt{n^2 - 1}}$$
 h. $u_n = \sqrt[n]{2^n - 1}$

h.
$$u_n = \sqrt[n]{2^n - 1}$$

i.
$$u_n = \sqrt[3]{n^3 + n^2} - n$$
 j. $u_n = \frac{n!}{\pi^n \ln n}$

$$j. \ u_n = \frac{n!}{\pi^n \ln n}$$

k.
$$u_n = \sum_{k=1}^{n} \frac{n}{k+n^2}$$

k.
$$u_n = \sum_{k=1}^n \frac{n}{k+n^2}$$
 l. $u_n = \sum_{k=1}^n \frac{k+n}{k^2+n^3}$

m.
$$u_n = \tan \frac{\pi}{n} \tan \frac{n\pi}{2n+1}$$
 n. $u_n = e^{2i\pi\sqrt{n^2+1}}$

n.
$$u_n = e^{2i\pi\sqrt{n^2+1}}$$

5 Donner une suite la plus simple possible équivalente à chacune des suites suivantes.

a.
$$u_n = e^{\frac{1}{n}} - 1$$

b
$$u_{-} = e^{\frac{1}{n}}$$

c.
$$u_n = n \sin \frac{\sqrt{n}}{(n+2)^2}$$
 d. $u_n = \sin \left(n + \frac{1}{n}\right)\pi$ i. $\lim_{x \to \frac{\pi}{6}} \frac{\tan 6x}{\cos \left(x + \frac{\pi}{3}\right)}$ j. $\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x}$

d.
$$u_n = \sin\left(n + \frac{1}{n}\right)\pi$$

e.
$$u_n = \ln(n+7) - \ln(n+3)$$

f.
$$u_n = \tan \frac{n\pi - 1}{2n}$$
 g. $u_n = \ln(2n^3 + 5)$

g.
$$u_n = \ln(2n^3 + 5)$$

h.
$$u_n = n^{\frac{1}{n}} - 1$$

i.
$$u_n = 2\sqrt{n} - \sqrt{n+3}$$

j.
$$u_n = \sqrt[n]{3} - \sqrt[n]{2}$$

j.
$$u_n = \sqrt[n]{3} - \sqrt[n]{2}$$
 k. $u_n = \sqrt[4]{n^4 + 1} - n$

1.
$$u_n = \binom{n+k}{k}$$
 avec $k \in \mathbb{N}$

6 Soit $a \in \overline{\mathbb{R}}$, et f et g deux fonctions définies au voisinage de a.

a. Démontrer que :

$$f \underset{(a)}{\sim} g \iff f \underset{(0)}{=} g + o(g).$$

b. En déduire

$$\lim_{x\to 0}\frac{\tan x + \tan 9x}{\tan x + \tan 4x}$$

7 On adopte la notation $f(x) \ll g(x)$ pour signifier $f(x) \stackrel{=}{\underset{(a)}{=}} o(g(x)).$

a.
$$x, x^2, \sqrt{x}, \ln x, x \ln x, x \ln^2 x, \frac{x}{\ln x}$$
 en $+\infty$.

b.
$$x, x^2, \sqrt{x}, x \ln x, x \ln^2 x, x^2 \ln x, \frac{x}{\ln x}$$
 en 0.

e.
$$u_n = \left\lfloor \frac{(n-1)^2}{n^2 - 3} \right\rfloor$$
 f. $u_n = \sin n \sin \frac{1}{n}$ c. $\frac{1}{x}, \frac{1}{x^2}, \frac{1}{\sqrt{x}}, \ln x, \frac{1}{x \ln x}, \frac{\ln x}{x}$ en 0.

d.
$$n^5$$
, $n!$, $n!!$, e^n , $e^{n!}$, 2^n , $e^{\sqrt{n}}$, $\frac{e^n}{n^2}$, $n^3 e^n$ en $+\infty$.

8 Calculer les limites suivantes.

a.
$$\lim_{x \to +\infty} \frac{\lfloor x \rfloor}{x}$$

a.
$$\lim_{x \to +\infty} \frac{\lfloor x \rfloor}{x}$$
 b. $\lim_{x \to 0^+} (\sin \sqrt{x}) \ln 2x$

c.
$$\lim_{x \to 0} \frac{5^x - 1}{\ln(x+1)}$$

c.
$$\lim_{x \to 0} \frac{5^x - 1}{\ln(x + 1)}$$
 d. $\lim_{x \to +\infty} x^2 - x \ln^2 x$

e.
$$\lim_{x \to 0^+} (\tan x)^{\sin x}$$

e.
$$\lim_{x \to 0^+} (\tan x)^{\sin x}$$
 f. $\lim_{x \to +\infty} \left(\frac{\ln (1+x)}{\ln x} \right)^{x \ln x}$

g.
$$\lim_{x \to 2\pi} \frac{\sin 3x}{\cos \frac{x}{4}}$$

g.
$$\lim_{x \to 2\pi} \frac{\sin 3x}{\cos \frac{x}{4}}$$
 h.
$$\lim_{x \to +\infty} \frac{x^x}{a^{x^2}} \quad (a > 1)$$

i.
$$\lim_{x \to \frac{\pi}{6}} \frac{\tan 6x}{\cos \left(x + \frac{\pi}{3}\right)}$$

j.
$$\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x}$$

9 Donner des équivalents simples de chacune des fonctions suivantes au point a indiqué.

a.
$$f(x) = \frac{(2x+3)^4}{(x-1)^2}$$
 en $a = 0, a = 1, a = +\infty$

b.
$$f(x) = \frac{\sin^2 x}{x^3}$$
 en $a = 0$

c.
$$f(x) = \frac{e^{\sin x} - 1}{\cos x - 1}$$
 en $a = 0$

d.
$$f(x) = \frac{\sin(nx)\cos(mx)}{\tan x}$$
 en $a = 0$ avec $(m, n) \in \mathbb{N}^{*2}$

e.
$$f(x) = \frac{\ln x}{(x+1)^3}$$
 en $a = 0$ et $a = +\infty$

f.
$$f(x) = x^{\sin x} - 1$$
 en $a = 0^+$

en
$$a = 0^{+}$$

g.
$$g(x) = \cos \sqrt{x} - 1$$
 en $a = 0^+$

en
$$a = 0^{+}$$

h.
$$h(x) = x^{\sin x} - \cos \sqrt{x}$$
 en $a = 0^+$

i.
$$f(x) = \tan x$$
 en $a = \frac{\pi}{2}$

en
$$a = \frac{\pi}{6}$$