Corrigé du TD 6 : Polynômes

Ne sont corrigés que les questions non traités intégralement en classe.

Exercice 1: (Une suite d'Appell: Centrale light)

Dans tout cet exercice on considère un entier naturel $n \ge 1$ fixé et on pose $E = \mathbb{R}_n[X]$.

On note Φ , l'application définie sur E par $\Phi(P) = 2P(X) - P(X+1)$.

- a) Etablir que $\Phi \in L(E)$.
- b) Prouver que $Sp(\Phi) = \{1\}$. Φ est-il diagonalisable? est-il bijectif?
- c) Vérifier que, pour $k \in [0, n]$, il existe un unique $P_k \in E$ tel que $2P_k(X) P_k(X+1) = X^k$.
- d) Préciser le degré de P_k , $k \in [0, n]$.
- e) Montrer que $P'_{k+1}=(k+1)P_k$, ce pour $k\in \llbracket 0,n-1 \rrbracket$. On pose $F_k=P_k(0)$ pour $k\in \llbracket 0,n \rrbracket$.

f) Justifier :
$$P_n = \sum_{k=0}^{n} \binom{n}{k} F_{n-k} X^k$$
.

Solution:

f) On raisonne par récurrence sur l'entier $n \geq 1$.

On obtient sans peine $P_0 = 1$ et $P_1 = X + 1$ et ainsi $F_0 = F_1 = 1$; ce qui valide l'initialisation.

Supposons la formule établie à un rang $n \ge 1$ alors par e) : $P'_{n+1} = (n+1)P_n = \sum_{k=0}^{n} (n+1) \binom{n}{k} F_{n-k} X^k$.

Puis par primitivation : $P_{n+1} = \sum_{k=0}^{n} \frac{n+1}{k+1} \binom{n}{k} F_{n-k} X^{k+1} + P_{n+1}(0)$.

Pour tout $k \in [0, n]$, $\frac{n+1}{k+1} \binom{n}{k} = \binom{n+1}{k+1}$ donc en posant j = k+1, il vient :

$$P_{n+1} = \sum_{j=1}^{n+1} {n+1 \choose j} F_{n+1-j} X^j + P_{n+1}(0).$$

Mais selon définition $P_{n+1}(0) = F_{n+1}$ d'où $P_{n+1} = \sum_{i=0}^{n+1} \binom{n+1}{j} F_{n+1-j} X^j$. La récurrence se poursuit

Exercice 2: (Polynômes d'Hurwitz: Mines 2022 PSI)

 $P \in \mathbb{R}[X]$, non constant, est un polynôme d'Hurwitz si toutes ses racines (complexes) ont une partie réelle strictement négative.

a) On se donne un polynôme de $\mathbb{R}[X]$ à coefficients strictement positifs et a une racine réelle de P.

Prouver que a est strictement négatif.

- b) Démontrer que tout diviseur non constant d'un polynôme d'Hurwitz est du même type.
- c) Soit P un polynôme d'Hurwitz irréductible et à coefficient dominant positif. Vérifier que tous les coefficients de P sont strictement positifs.

Soient $n \in \mathbb{N}^*$ et $(z_1, z_2, \dots, z_n) \in \mathbb{C}^n$.

On définit les deux polynômes P et Q de $\mathbb{C}[X]$ par :

$$P(X) = \prod_{k=1}^{n} (X - z_k)$$
 et $Q(X) = \prod_{(k,\ell) \in ([1,n])^2} (X - z_k - z_\ell)$.

- d) On suppose n=2 et $P\in\mathbb{R}_2[X]$. Si les coefficients de Q sont strictement positifs, P est-il alors un polynôme d'Hurwitz?
- e) Soient A et B deux polynômes de $\mathbb{R}[X]$ dont tous les coefficients sont strictement positifs. Démontrer que les coefficients du produit AB sont également strictement positifs.
- f) Démontrer que si P et Q sont dans $\mathbb{R}[X]$, alors on a l'équivalence: P est un polynôme d'Hurwitz si et seulement si les coefficients de P et Q sont strictement positifs.

Solution:

d) Comme z_1 et z_2 sont conjugués, il suffit de savoir si $S=z_1+z_2$ est strictement négatif.

On notera que
$$Q = (X - S)^2(X - 2z_1)(X - 2z_2) = (X - S)^2(X^2 - 2SX + 4P)$$
, où $P = z_1 z_2$.

Le coefficient du terme en X^3 de Q vaut donc -4S et celui-ci est >0 par hypothèse , P s'en trouve bien être un polynôme d'Hurwitz

- e) Sans difficulté aucune
- f) Supposons que P soit d'Hurwitz alors P est le produit de facteurs irréductibles (sur \mathbb{R}) unitaires (i.e de coefficients dominants égaux à 1); ces facteurs sont eux aussi (par b)) d'Hurwitz donc (grâce à c)) sont à coeffcients > 0 et P l'est encore (en appliquant e)).

Q est aussi d'Hurwitz (car à coefficients réels car ses racines sont réelles ou groupables conjuguées 2 à 2, par la même structure pour les racines de P) et on effectue sur Q le raisonnement tenu sur P. Ainsi Q est-il à coefficients > 0.

Inversement si les coefficients de P et Q sont strictement positifs.

a) montre déjà que les racines réelles de P sont bien strictement négatives. Considérons alors z_k une racine de P non réelle dont la partie imaginaire est notée a. Alors $\overline{z_k}$ est aussi une racine de P, il existe donc $j \in [\![1,n]\!]$ tel que $z_j = \overline{z_k}$. Mais $z_j + z_k = 2a$ est alors une racine réelle de Q dont tous les coefficients sont > 0. Il en résulte (avec la question a)) que 2a < 0.

P est bien un polynôme d'Hurwitz■

Exercice 3: (Polynômes scindés réels, classique)

- a) Soit $P \in \mathbb{R}[X]$, scindé sur \mathbb{R} , prouver (si deg°(P) ≥ 2) que P' est aussi scindé.
- b) On suppose que $P \in \mathbb{R}[X]$, de degré $n \geq 1$, possède n racines réelles distinctes.

Etablir que P + P' possède aussi n racines réelles distinctes.

Solution:

- a) On pose n comme étant le degré de P. Notons $x_1 < ... < x_s$ les différentes racines (réelles nécessairement
- ici) de P et $m_1,...,m_s$ leurs multiplicités respectives relativement à P ($n=\sum_{i=1}^s m_i$, ce puisque P scindé sur
- \mathbb{R}). On peut aussi sans perte de généralité supposer P unitaire, ce qui permet d'écrire que :

 $P = (X - x_i)^{m_i} Q_i$, ce pour tout $i \in [1, s]$, où $Q_i \in \mathbb{R}[X]$.

Par simple dérivation des deux membres de cette égalité, il vient que $(X - x_i)^{m_i - 1} | P'$.

Bilan 1 :
$$\exists Q \in \mathbb{R}[X] \text{ tel que } P' = Q \prod_{i=1}^{s} (X - x_i)^{m_i - 1} \text{ et } \boxed{d^{\circ}(Q) = s - 1}.$$

Remarquons que si s=1, l'objectif est atteint et supposons désormais que $s\geq 2$.

Fixons maintenant $i \in [1, s-1]$; par application du théorème de Rolle à P sur le segment $[x_i, x_{i+1}]$ ($P(x_i) = P(x_{i+1}) = 0$ et P dérivable sur $[x_i, x_{i+1}]$), il existe $c_i \in]x_i, x_{i+1}[$ tel que $P'(c_i) = 0$.

Sont ainsi mis en évidence s-1 racines de P' toutes différentes de $x_1,...,x_s$ (elles s'intercalent), ce sont donc des (et même les racines de Q qui s'en trouve scindé (à racines simples) sur \mathbb{R} . Ceci entraı̂ne :

Bilan 2 : P' est scindé sur \mathbb{R} et il même scindé sur \mathbb{R} à racines simples s'il en est dèjà ainsi pour P.

Le résultat désiré est trivial pour les polynômes à coefficients complexes puisque tout polynôme non constant est scindé mais le raffinement que contient le bilan 2 est faux. $X^4 - 1$ est scindé sur $\mathbb C$ à racines complexes alors que ce n'est plus vrai pour son polynôme dérivé

b) On note $x_1 < < x_n$ les n racines réelles de notre polynôme et on considère $f: x \to e^x P(x)$ qui est donc une fonction dérivable sur \mathbb{R} . En appliquant le théorème de Rolle à f sur chaque segment $[x_i, x_{i+1}]$ pour $i \in [1, n-1]$, on trouve $c_i \in]x_i, x_{i+1}[$ tel que $f'(c_i) = 0 \iff (P+P')(c_i) = 0$. On met en évidence n-1 racines pour P+P' $c_1, ..., c_{n-1}$ qui sont disposées ainsi $x_1 < c_1 < x_2 < c_2 < < x_{n-1} < c_{n-1} < x_n$. Pour conclure (le degré de P+P' valant n), il nous suffit de trouver une autre racine pour P+P' ou pour f'. Pour cela on observe (Rolle généralisé, expliqué en classe) que $f(x_1) = 0$ et $f(x) \underset{x \to -\infty}{\to} 0$, il existe donc

 $c_0 < x_1$ en lequel f' s'annule. Ceci nous permet de conclure

NB : Même résultat pour aP + P', où $a \in \mathbb{R}$.

Exercice 4: (Lemme des novaux du pauvre)

On se donne E un \mathbb{K} espace vectoriel et $f \in L(E)$ ainsi que $a_1, ..., a_n$ des éléments de \mathbb{K} deux à deux distincts.

On pose, pour
$$k \in [1, n]$$
, $E_k = Ker(f - a_k i d_E)$ et $Q = \prod_{j=1}^n (X - a_j)$.

Démontrer que $Ker(Q(f)) = \bigoplus_{k=1}^{n} E_k$.

(On aura tout intérêt à utiliser une base d'interpolation de Lagrange).

Solution:

Commençons par des notations.

Pour
$$k \in [1, n]$$
, posons $Q_k = \prod_{j=1, j \neq k}^n (X - a_j)$ et $t_k = \frac{1}{Q(a_k)}$.

Remarquer alors qu'en posant $\ell_k = t_k Q_k$, on dispose en $(\ell_1,, \ell_n)$ de la base d'interpolation de Lagrange en les $a_1, ..., a_n$ et qu'en particulier (cf TD3) $1 = \sum_{k=1}^n \ell_k = \sum_{k=1}^n t_k Q_k$ (1).

On posera $S = \bigoplus_{k=1}^{n} E_k$ (d'après VOTRE COURS : caractérisation géométrique de la diagonalis-

abilité d'un endomorphisme, les E_k , $1 \le k \le n$, sont bien somme directe), montrons que $S \subset Ker(Q(f))$ en vérifiant que cette inclusion est valable pour chaque E_k .

Comme $Q = Q_k \times (X - a_k)$ et par propriété des polynômes d'endomorphisme, nous avons $Q(f) = Q_k(f)o(f - a_k i d_E)$ et ainsi, pour $x \in E_k = Ker(f - a_k i d_E)$, $Q(f)(x) = Q_k(f)((f - a_k i d_E)(x)) = Q_k(f)(0_E) = 0_E$. Ce qui donne l'inclusion voulue \square

Inversement en utilisant (1), il vient $id_E = \sum_{k=1}^n t_k Q_k(f)$ donc $x = \sum_{k=1}^n t_k Q_k(f)(x)$ (2), ce pour tout $x \in Ker(Q(f))$.

Pour $k \in [1, n]$, posons $x_k = Q_k(f)(x)$; il nous suffit alors pour vérifier que $Ker(Q(f)) \subset S$ de prouver que chaque $x_k \in E_k$, ce en vertu de (2).

Montrons ceci : $(f - a_k i d_E)(x_k) = (f - a_k i d_E) o Q_k(f)(x) = Q(f)(x) = 0_E$, ce puisque $x \in Ker(Q(f))$. L'assertion en vue est donc légitimée

NB :i) E n'est pas nécessairement de dimension finie dans tout ce qui précède.

Si maintenant E l'est:

En particulier est prouvé que si f possède un polynôme annulateur scindé sur \mathbb{K} , à racines simples, f est dz. (Prendre pour Q un tel polynôme annulateur, comme E = Ker(Q(f)), nous avons bien, par caractérisation géométrique de diagonalisabilité, f diagonalisable). Ceci prouve la réciproque de l'implication démontrée en classe.