TD4 (DL1) Corrigé partiel

La quasi totalité des questions a été travaillée en classe. Ne sont corrigées ici que 5), 6) 8) et 9) de la partie B.

Dans tout le problème, E est un \mathbb{R} -espace vectoriel de dimension 3.

Pour u endomorphisme de E et n entier naturel non nul, on note $u^n = u \circ u \circ \cdots \circ u$ (n fois).

On note $\mathfrak{M}_3(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices carrées d'ordre 3, $GL_3(\mathbb{R})$ le groupe des matrices inversibles de $\mathfrak{M}_3(\mathbb{R})$, et I_3 la matrice unité de $\mathfrak{M}_3(\mathbb{R})$.

On notera par 0 l'endomorphisme nul, la matrice nulle et le vecteur nul.

Pour deux matrices A et B de $\mathfrak{M}_3(\mathbb{R})$, on dira que la matrice A est **semblable** à la matrice B s'il existe une matrice P de $GL_3(\mathbb{R})$ telle que : $A = P^{-1}BP$. On rappelle que si B et B sont deux bases de B, si B est la matrice de passage de la base B à la base B, si B est un endomorphisme de B de matrice B dans la base B alors B et de matrice B dans la base B alors B est semblable à la matrice B. On notera B pour dire que la matrice B est semblable à la matrice B.

Partie A

- 1. Soit u un endomorphisme de E et soit i et j deux entiers naturels. On considère l'application w de ker u^{i+j} vers E définie par : $w(x) = u^j(x)$.
 - (a) Montrer que $Im(w) \subset \ker u^i$.
 - (b) En déduire que $\dim(\ker u^{i+j}) \leq \dim(\ker u^i) + \dim(\ker u^j)$.
- 2. Soit u un endomorphisme de E vérifiant : $u^3 = 0$ et rg(u) = 2.
 - (a) Montrer que dim(ker u^2) = 2. (On pourra utiliser deux fois la question **1b**.).
 - (b) Montrer que l'on peut trouver un vecteur a non nul de E tel que $u^2(a) \neq 0$, et en déduire que la famille $(u^2(a), u(a), a)$ est une base de E.
 - (c) Ecrire alors la matrice U de u et la matrice V de $u^2 u$ dans cette base.
- 3. Soit u un endomorphisme de E vérifiant : $u^2 = 0$ et rg(u) = 1.
 - (a) Montrer que l'on peut trouver un vecteur b non nul de E tel que $u(b) \neq 0$.
 - (b) Justifier l'existence d'un vecteur c de ker u tel que la famille (u(b), c) soit libre, puis montrer que la famille (b, u(b), c) est une base de E.
 - (c) Ecrire alors la matrice U' de u et la matrice V' de $u^2 u$ dans cette base.

Partie B

Soit désormais une matrice A de $\mathfrak{M}_3(\mathbb{R})$ semblable à une matrice du type $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$ de $\mathfrak{M}_3(\mathbb{R})$.

On se propose de montrer que la matrice A est semblable à son inverse A^{-1} .

On pose alors
$$N = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$$
, et soit une matrice P de $GL_3(\mathbb{R})$ telle que $P^{-1}AP = T = I_3 + N$.

- 1. Expliquer pourquoi la matrice A est bien inversible.
- 2. Calculer N^3 et montrer que $P^{-1}A^{-1}P = I_3 N + N^2$.
- 3. On suppose dans cette question que N=0, montrer alors que les matrices A et A^{-1} sont semblables.
- 4. On suppose dans cette question que rg(N) = 2. On pose $M = N^2 N$.
 - (a) Montrer que la matrice N est semblable à la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et en déduire une matrice semblable à la matrice M.
 - (b) Calculer M^3 et déterminer rg(M).
 - (c) Montrer que les matrices M et N sont semblables.
 - (d) Montrer alors que les matrices A et A^{-1} sont semblables.
- 5. On suppose dans cette question que rg(N) = 1. On pose $M = N^2 N$. Montrer que les matrices A et A^{-1} sont semblables.
- 6. **Exemple**: soit la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

On note (a, b, c) une base de E et u l'endomorphisme de E de matrice A dans cette base.

- (a) Montrer que $\ker(u-id_E)$ est un sous-espace vectoriel de E de dimension 2 dont on donnera une base (e_1,e_2) .
- (b) Justifier que la famille (e_1, e_2, c) est une base de E, et écrire la matrice de u dans cette base.
- (c) Montrer que les matrices A et A^{-1} sont semblables.
- 7. Réciproquement, toute matrice de $\mathfrak{M}_3(\mathbb{R})$ semblable à son inverse est-elle nécessairement semblable à une matrice du type $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$
- 8. Montrer que toute matrice de $\mathfrak{M}_3(\mathbb{R})$ qui est le produit de deux matrices de symétrie est semblable à son inverse. Réciproque? (cf Mines PC 2025 écrit).
- 9. Généraliser à toute taille de matrice (Même référence).

Solution:

5) Puisque le rang de N vaut 1 c'est que $\alpha \gamma = 0$ ce qui implique aussi que $N^2 = 0_3$.

On observe quesi que -N est de rang 1 et de carré nul. La question 3) de la partie A montre alors que $N \sim -N$ (car toutes les deux semblables à U'. Dès lors il existe $Q \in Gl_3(\mathbb{R})$ tel que $-N = Q^{-1}NQ$ ce qui implique que $I_3 - N = Q^{-1}(I_3 + N)Q$.

Avec les hypothèses et le 2) de cette partie nous savons que $A \sim I_3 + N$ et $A^{-1} \sim I_3 - N$ donc par transitivité $A \sim A^{-1}$

- 6)a) On trouve sans peine que $Ker(u-id_E) = Vect(a,b-c)$. On pose $e_1 = a$ et $e_2 = b-c$
- b) (e_1, e_2) est une base de $Ker(u id_E)$ (donc libre) et $c \notin Ker(u id_E)$ puisque $f(c) = -b + 2c \neq c$ donc cette famille est bien libre et de cardinal = dim(E), il s'agit d'une base de E.

Par ailleurs $f(e_1) = e_1$, $f(e_2) = e_2$ et $f(c) = -b + 2c = -c - e_2 + 2c = -e_2 + c$.

Donc la matrice de f dans la base considérée est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

c) Il suffit d'appliquer le 5) précédent■

Pour les deux dernières questions, l'énoncé attendait des pistes ou des réponses partielles seulement.

8)et9) Pour la première partie de la question, on considère deux matrices réelles de symétrie, notées S et R,

de taille $n \ge 1$. Montrons que $(SR)^{-1} = R^{-1}S^{-1} = RS$ (matrices de symétrie!) et SR sont semblables. Il suffit d'observer que $RS = R(SR)R = R^{-1}(SR)R\square$

Notons aussi (vrai dans le cadre général) que toute matrice semblable à une matrice de symétrie est encore une matrice de symétrie donc que toute matrice semblable à un produit de deux (etc...) matrices de symétrie est en fait un produit de deux matrices de symétrie.□

La réciproque évoquée en , même pour n=3, est d'une toute autre difficulté. Nous apportons une réponse (très) partielle.

On se donne une matrice semblable A à $I_n + N$, où rg(N) = 1 et $N^2 = 0_n$.

On se donne une matrice semblables à la matrice, donnée par blocs par commodité, $W = \begin{pmatrix} 0_{n-1} & 1 \\ 0_{1,n-1} & 0_{n-1,1} \end{pmatrix}$

(passer à f l'endomorphisme canoniquement associé, considérer un vecteur x_n dirigeant l'image de g, prendre en compte que $\mathbb{R}^n = Ker(f) \oplus Vect(x_n)$ et compléter $(x_1 = f(x_n))$ pour obtenir une base $(x_1, ..., x_{n-1})$ de Ker(f); W est alors la matrice de f dans la base $(x_1,, x_n)$).

En particulier $I_n - N = (I_n + N)^{-1}$ est semblable à $I_n + N$ et $A \sim A^{-1}$, nous allons montrer que $I_n + W$ est le produit de deux matrices de symétries, ce qui, par remarques précédentes, prouvera que A l'est aussi. On définit alors K = diag(1, ..., 1, -1) et Z = K + N et on voit que $K^2 = Z^2 = I_n$ et $KZ = W \blacksquare$