TD 5 : Corrigé partiel

Exercice 1: (Centrale 2015 écrit partiel)

On note D l'opérateur de dérivation de $\mathbb{K}[X]$ et on considère F un sev de $\mathbb{K}[X]$, stable par D.

- 1) On suppose ici que F est de dimension finie ≥ 1 .
- a) Prouver que $\{\deg(P), P \in F \{0\}\}\$ possède un plus grand élément, noté m.

On choisit $P \in F$ de degré m.

- b) Etablir que $(P, D(P), ..., D^m(P))$ est une famille libre de F.
- c) En déduire que $F = \mathbb{K}_m [X]$.
- 2) F n'est pas de dimension finie désormais. En s'inspirant de la méthode précédente montrer que $F = \mathbb{K}[X]$.
- 3) Quels sont tous les sev de $\mathbb{K}[X]$ stables par D?

Exercice 2: (endomorphisme nilpotent d'indice maximal)

Ici $\dim(E) = n \ge 1$. On considère $f \in L(E)$ tel que $f^n = \omega$, où ω est l'endomorphisme nul de E. On suppose en outre que $f^{n-1} \ne \omega$.

- 1) Justifier l'existence d'un x de E tel que $f^{n-1}(x) \neq 0_E$.
- 2) Etablir que $(x, f(x), ..., f^{n-1}(x))$ est une base de E, notée b.
- 3) Donner la matrice de f dans la base b. Préciser noyau et image de f.
- 4) En déduire que les matrices $\begin{pmatrix} 2 & -4 \\ 1 & -2 \end{pmatrix}$ et $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ sont semblables

Exercice 3: (Vandermonde)

- a) Donner un exemple de n nombres complexes a_1, a_2, \ldots, a_n deux à deux distincts et tous non nuls, tels que $\sum_{k=1}^n a_k^2 = 0$. b) Soient n nombres complexes x_1, x_2, \ldots, x_n deux à deux distincts et tous non nuls, démontrer que l'une
- b) Soient n nombres complexes x_1, x_2, \ldots, x_n deux à deux distincts et tous non nuls, démontrer que l'une au moins des sommes $\sum_{k=1}^{n} x_k, \sum_{k=1}^{n} x_k^2, \sum_{k=1}^{n} x_k^3, \cdots, \sum_{k=1}^{n} x_k^n$ est non nulle.

Solution:

- a) Corrigé en classe.
- b) On raisonne par l'absurde en supposant ces n sommes nulles et on traduit le système obtenu matriciellement par :

$$MX=0_{n,1}$$
, où on a posé $X=\left(\begin{array}{c}x_1\\ \vdots\\ x_n\end{array}\right)\in M_{n,1}(\mathbb{C})$ et $M=(x_j^{i-1})_{1\leq i,j\leq n}$ (qui est une matrice de Vander-

monde d'ordre n).

Comme les x_i sont deux deux distincts, M est inversible et $MX = 0_{n,1} \Longrightarrow X = M^{-1}0_{n,1} = 0_{n,1}$. Ce qui signifierait que tous les x_i sont nuls. Absurde

Exercice 4: (Matrices de trace nulle)

On pose:

- a) n entier naturel non nul.
- b) T est l'ensemble des éléments de $M_n(\mathbb{K})$ de trace nulle.
- c) D = diag(1, 2, ..., n).
- d) $E \mathbb{K}$ espace vectoriel de dimension finie.
- 1) On se donne $f \in L(E)$ tel que : (x, f(x)) lié pour tout x de E(*)

En appliquant (*) aux éléments d'une base de E, montrer que f est une homothétie de E.

On se propose de montrer par récurrence sur n que tout élément de T est semblable à une matrice de diagonale nulle.

- 2)a) Initialiser.
- b) On suppose la propriété à démontrer vraie au rang n-1 et on se donne $A \in T$.
- i) Conclure si A est scalaire.
- ii) On suppose ici que A n'est pas scalaire, établir que A estsemblable à une matrice du type :

$$\begin{pmatrix}
0 & a_2 & \cdots & \cdots & a_n \\
1 & & & & & \\
0 & & (B) & & & \\
\vdots & & & & & \\
0 & & & & &
\end{pmatrix}$$

avec $a_2,....,a_n$ dans \mathbb{K} et B dans $M_{n-1}(\mathbb{K}).$ Conclure aussi.

- 3) En utilisant que $M \to MD DM$, montrer que $(U, V) \to UV VU$ réalise une surjection de $(M_n(\mathbb{K}))^2$ sur T.
- 4) Dans cette question $\mathbb{K} = \mathbb{C}$ et $A \in T$; vérifier qu'il existe U, V, W de $M_n(\mathbb{C})$ telles que :
- $A = UVW + jWUV + j^2VWU$. Proposer, sans démonstration, une généralisation.

Solution:

- 1) Sera corrigé lundi en TD.
- 2) a)+b)i) Dans les deux cas A est scalaire : $A = \mu I_n \Rightarrow tr(A) = n\mu = 0$ soit $\mu = 0$ et $A = 0_n$ qui est , entre autre , à diagonale nulle.
- b) ii) Puisque A n'est pas scalaire, θ l'endomorphisme canoniquement associé à A, n'est pas une homothétie de \mathbb{K}^n donc par 0) (contraposée) il existe x de \mathbb{K}^n tel que $(x, \theta(x))$ soit libre et si on complète cette dernière en une base de \mathbb{K}^n , la matrice de θ dans cette base possède une forme similaire à celle exigée par l'énoncé. Celle-ci se note M; représentant θ dans une base, elle est bien semblable à A.Comme 0 = tr(A) = tr(M) = tr(B), on peut appliquer à B l'hypoyhèse de récurrence, à savoir $S = Q^{-1}BQ$ avec $Q \in GL_{n-1}(\mathbb{K})$ et S, matrice de même taille et à diagonale nulle. Considérons la matrice par blocs

$$P = \begin{pmatrix} 1 & 0 \cdots & 0 \\ 0 \vdots & (Q) & \\ \vdots & & \end{pmatrix} \text{ qui est inversible avec } P^{-1} = \begin{pmatrix} 1 & 0 \cdots & 0 \\ 0 \vdots & (Q^{-1}) & \\ \vdots & & \end{pmatrix} \text{ puis effectuons le produit matriciel }$$

par blocs
$$P^{-1}MP$$
; ce qui donne $P^{-1}MP = \begin{pmatrix} 0 & (X) \\ 0 \vdots & (S) \\ \vdots & \end{pmatrix}$.

Cette matrice étant semblable à M, elle l'est aussi à A et de trace nulle. Ainsi la propriété à vérifier s'en trouve héréditaire et, par récurrence, se valide pour tout entier naturel non nul.

2) $\ell: M \to MD - DM$ appartient à $L\left(M_n\left(\mathbb{K}\right)\right)$ et son noyau est constitué des matrices commutant avec D. Or (m_{ij}) commute avec $D \Leftrightarrow jm_{ij} = im_{ij}$ pour $1 \leq i,j \leq n$. Ceci équivaut à dire que M est diagonale .Par conséquent $dim(Ker(\ell) = n \Rightarrow (\text{formule du rang}) rg(\ell) = n^2 - n \text{ or } Im(\ell) \text{ est, par le calcul précédent, inclus dans } Z$. Mais puisque dim $Z = n^2 - n$, il vient que $Im(\ell) = Z$.

Considérons alors $X \in T$, grâce à 1): $\exists S \in Z, \exists P \in GL_n(\mathbb{K}), X = P^{-1}SP$ et, parce que $Im(\ell) = Z, \exists M \in M_n(\mathbb{K}), S = MD - DM$; il en résulte que $X = P^{-1}(MD - DM)P = P^{-1}MDP - P^{-1}DMP$, on pose alors $U = P^{-1}MP, V = P^{-1}DP$ et X = UV - VU, ce qui fournit la surjectivité souhaitée \square

 $3)\frac{1}{j}A\in T$ et , par 2) il existe deux matrices W,V de $M_n(\mathbb{C})$ telles que : $\frac{1}{j}A=WV-VW\Rightarrow A=jWV+(1+j^2)VW=UVW+jWUV+j^2VWU$, en prenant $U=I_n$. Une généralisation possible : posons $\tau=\exp(\frac{2i\pi}{m})$ où m entier ≥ 2 et $A\in T$; il existe alors m éléments de $M_n(\mathbb{C})$ $U_1,...,U_m$ tels que: $A=U_1...,U_m+\tau U_mU_1...,U_{m-1}+...+\tau^{m-1}U_2...,U_1$.