Mise au point sur les polynômes

Comme d'habitude K désigne le corps des réels ou celui des complexes.

1 (Ordre de) Multiplicité d'une racine

Définition 1 Soit $P \in (\mathbb{K}[X])^*$ admettant $a \in \mathbb{K}$ comme racine.

On appelle multiplicité de a relativement à P le plus grand des entiers naturels k tels que $(X-a)^k|P$; on la note $m_P(a)$.

On observe que $m_P(a) \ge 1$.

On peut convenir que $m_P(a) = 0$ si a n'est pas racine de P.

On dispose des caractérisations suivantes de cette multiplicité :

Proposition 1 Soit $(P, a, m) \in ((\mathbb{K}[X])^*, \mathbb{K}, \mathbb{N})$.

Les assertions suivantes sont équivalentes :

- $i) m = m_P(a).$
- ii) Il existe $Q \in \mathbb{K}[X]$ tel que $P = (X a)^m Q$ et $Q(a) \neq 0$.
- iii) Pour tout $k \in [0, m-1]$, $P^{(k)}(a) = 0$ et $P^{(m)}(a) \neq 0$.

Enfin et en notant Z(P) l'ensemble des racines dans \mathbb{K} d'un polynôme $P \in \mathbb{K}[X]$, nous avons :

Proposition 2 Soit
$$P \in (\mathbb{K}[X])^*$$
: $\sum_{a \in Z(P)} m_P(a) \leq d^{\circ}(P)$.
Par contraposée, si $\sum_{a \in Z(P)} m_P(a) > d^{\circ}(P)$ alors $P = 0$.

2 Polynômes scindés sur (ou dans) $\mathbb K$

Proposition 3 Soit $P \in \mathbb{K}[X]$ de degré $n \geq 1$ dont le coefficient dominant est noté a.

Les assertions suivantes sont équivalentes :

$$i)\exists (x_1, ..., x_n) \in \mathbb{K}^n, P = a \prod_{i=1}^n (X - x_i).$$
 $ii)n = \sum_{a \in Z(P)} m_P(a).$
 $iii) P = a \prod_{a \in Z(P)} (X - a)^{m_P(a)}.$

Dès lors :

Définition 2 Si une des propriétés précédentes s'avère vraie, le polynôme P est dit $scindé sur \mathbb{K}$.

Le théorème de d'Alembert-Gauss ou fondamental de l'algèbre stipule donc que :

Proposition 4 Tout polynôme non constant de $\mathbb{C}[X]$ est scindé sur \mathbb{C} . (En revanche $X^4 - 1$ n'est pas scindé sur \mathbb{R})

On retiendra (en gardant notation et contexte de la proposition 3) que :

Remarque 1 On peut factoriser P de deux façons. a) Avec ii) de la proposition 3 et $x_1, ..., x_n$ est une liste des racines de P; les x_i ne sont pas nécessairement distincts. Chaque racine de P apparaît dans cette liste autant de fois que sa multiplicité. b) Avec iii).