TD 3 (Corrigé) : Interpolation de Lagrange

Dans certains problèmes numériques (méthode de Simpson par exemple), il convient de substituer à une fonction donnée une fonction plus simple (en général polynomiale et de degré minimal) prenant en des points fixés (et à choisir mais c'est une autre question) les mêmes valeurs que la fonction initiale (c'est interpoler \approx particulariser ou contraire d'extrapoler).

Ne sont corrigées que les parties non abordées avec toute la classe.

(Interpolation ¹ de Lagrange : Partie COURS)

n désigne un entier naturel.

On se donne $x_0 < x_1 \dots < x_n \ n+1$ réels.

a) Montrer que l'application Φ qui à $P \in \mathbb{R}_n[X]$ associe $(P(x_0),....,P(x_n))$ réalise un isomorphisme de $\mathbb{R}_n[X]$ sur \mathbb{R}^{n+1} .

En déduire que le déterminant de Vandermonde (il est d'ordre n+1) i.e celui de la matrice $(x_{i-1}^{i-1})_{1 \leq i,j \leq n+1}$ est non nul.

On note I un segment contenant tous les x_i et on se donne f une fonction définie sur I et à valeurs dans \mathbb{R} .

b) Etablir qu'il existe un unique polynôme P de $\mathbb{R}_n[X]$ tel que : $\forall i \in [0, n], P(x_i) = f(x_i)$

Cet unique polynôme est le polynôme d'interpolation de Lagrange de f en les points $x_0, ..., x_n$

On le notera, faute de mieux, $|L_n(f)|$. On justifiera rapidement que L_n est une application linéaire surjective

de
$$\mathcal{F}(I,\mathbb{R})$$
 sur $\mathbb{R}_n[X]$ (coïncidant avec l'identité sur $\mathbb{R}_n[X] \hookrightarrow \mathcal{F}(I,\mathbb{R})$). En donner aussi le noyau. On pose, pour tout $i \in [0,n]$, $\ell_i = \prod_{0 \leq j \leq n, j \neq i} \frac{X - x_j}{x_i - x_j}$.

- c) Vérifier que $\ell_i(x_k) = \delta_{i,k}$, où δ désigne le symbole de Kronecker, ce pour tout $(i,k) \in [0,n]^2$.
- d) En déduire que $(\ell_0,, \ell_n)$ est une base de $\mathbb{R}_n[X]$, dite base de Lagrange en les les points $x_0, ..., x_n$.
- e) Prouver que $L_n(f) = \sum_{i=0}^n f(x_i)\ell_i$ (Lagrange). f) Que vaut, pour $k \in [0, n], \sum_{i=0}^n x_i^k \ell_i$? Et pour k = n + 1?

b) La bijectivité de Φ permet d'affirmer l'existence et l'unicité d'un $P \in \mathbb{R}_n[X]$ tel que $\Phi(P) = (f(x_0), ..., f(x_n)),$ il en résulte l'existence et l'unicité $P \in \mathbb{R}_n[X]$ tel que $(P(x_0),, P(x_n)) = (f(x_0), ..., f(x_n))$ On notera, linéarité évaluation, que $L_n \in L(\mathcal{F}(I,\mathbb{R}),\mathbb{R}_n[X])$ et (en assimilant polynôme et fonction polynôme et en voyant $\mathbb{R}_n[X]$ comme un sev de $\mathcal{F}(I,\mathbb{R})$) que (par unicité) tout élément de $\mathbb{R}_n[X]$ est son propre interpolant de Lagrange. Donc on retiendra:

Remarque 1 $\forall P \in \mathbb{R}_n[X], L_n(P) = P$

La surjectivite de L_n en découle.

f) En utilisant la remarque grisée précédente et la formule de Lagrange démontrée en e), il vient :

$$\forall k \in [0, n], \sum_{i=0}^{n} x_i^k \ell_i = L_n(X^k) = X^k$$

Comme le seul polynôme de degré $\leq n$ ayant tous les x_i comme racines est le polynôme nul, on a $L_n(\prod (X-x_i))=0$, ce qui donne enfin :

interpoler un texte = en supprimer certains mots

$$\sum_{i=0}^{n} x_i^{n+1} \ell_i = L_n(X^{n+1}) = Q = X^{n+1} - \prod_{i=0}^{n} (X - x_i)$$

(Erreur d'interpolation de Lagrange)

On garde les notations de l'exercice précédent mais on suppose f de classe C^{n+1} sur I.

On pose $\pi(t) = \prod_{i=0}^{n} (t - x_i)$, ce pour tout réel t et on se propose de montrer que :

$$6 \forall x \in I, \exists c_x \in I \mid f(x) - L_n(f)(x) = \frac{\pi(x)}{(n+1)!} f^{(n+1)}(c_x)$$

On notera que cette formule est évidemment vérifiée si x est un des points d'interpolation; on fixe donc $x \in I$ et $x \neq x_i$ pour tout $i \in [0, n]$. Enfin on pose $g(t) = f(t) - L_n(f)(t) - \frac{\pi(t)}{\pi(x)}(f(x) - L_n(f)(x))$, ce pour tout $t \in I$.

- a) Vérifier que g s'annule n+2 fois sur I.
- b) En appliquant de façon répétée et justifiée le théorème de Rolle, prouver le résultat en vue.
- c) On envisage le cas de l'interpolation linéaire n=1. On posera $x_0=a < b=x_1$. Etablir que $\forall x \in [a,b], |f(x) - \frac{(f(b) - f(a))x + bf(a) - af(b)}{b - a}| \leq \frac{M(b - a)^2}{8}, \text{ où } M \text{ désigne le maximum de } |f''| \text{ sur } designe de maximum de } |f''|$ le segment [a, b].

Solution:

- a) On voit sans peine que g s'annule en tous les x_i et en $x \blacksquare$
- b) Ceci entraîne que g' s'annule n+1 fois par Rolle (g étant dérivable sur I) entre deux zéros consécutifs (ceux mis en évidence en a)). En répétant l'argument, on comprend que $g^{(n+1)}$ s'annule au moins une fois sur I. On note c_x un tel point d'annulation pour $g^{(n+1)}$.

Or $g^{(n+1)}(c_x) = f^{(n+1)}(c_x) - 0 - \frac{(n+1)!}{\pi(x)}(f(x) - L_n(f)(x))$, ce puisque d° $(L_n) \le n$ et que d° $(\pi) = n + 1$ et que π est unitaire.

De
$$f^{(n+1)}(c_x) - 0 - \frac{(n+1)!}{\pi(x)}(f(x) - L_n(f)(x)) = 0$$
, on tire la relation voulue

c) On pose $L = L_2$. La formule de Lagrange (e) de l'exercice précédent) donne :

$$\overline{\forall x \in [a,b] \subset I, \exists c_x \in I \text{ tel que } |f(x) - L(x)| = (x-a)(b-x)\frac{|f''(c_x)|}{2}.$$

A fortiori et dans le même contexte : $|f(x) - L(x)| \le \frac{M(x-a)(b-x)}{2}$. Une étude ou autre de $x \to (x-a)(b-x)$ sur [a,b] prouve que cette fonction atteint son maximum pour $x = \frac{a+b}{2}$ et qu'ainsi on a bien :

$$\forall x \in [a, b], |f(x) - \frac{(f(b) - f(a))x + bf(a) - af(b)}{b - a}| \le \frac{M(b - a)^2}{8}$$