DS 1 (Corrigé).

La rédaction, l'argumentation et la présentation matérielle entrent dans une part significative de la notation; vous devrez aussi respecter la terminologie et les règles d'usage en vigueur. Les résultats numériques seront encadrés et simplifiés.

Tout manquement à ces consignes sera sanctionné.

Exercice 1 : (Etude d'une série)

- Soient $(a, b, c) \in \mathbb{R}^3$ et pour tout $n \ge 1$ $u_n = a \ln(n+2) + b \ln(n+1) + c \ln(n)$. a) Vérifier que $u_n = (a+b+c) \ln(n) + \frac{2a+b}{n} + O(\frac{1}{n^2})$ si $n \to +\infty$.
- b) En déduire qu'une condition nécessaire et suffisante de convergence pour $\sum_{n\geq 1} u_n$ est b=-2a et c=a,a

étant arbitraire.

On se place désormais sous cette contrainte.

- c) En simplifiant les sommes partielles de cette série, donner la valeur de sa somme.
- d) On note, pour $n \geq 1$, R_n le reste d'ordre n de la série $\sum_{n \geq 1} u_n$. Donner un équivalent simple de R_n lorsque $n \to +\infty$. La série $\sum_{n \ge 1} R_n$ converge-t-elle ?

a) Pour n assez grand : $u_n = a \ln(1+2/n) + b \ln(1+1/n) + (a+b+c) \ln(n) = \frac{2a}{n} + \frac{b}{n} + O(1/n^2) + (a+b+c) \ln(n) \square$ b) Si $a+b+c \neq 0$, le a) montre que la suite $(|u_n|)$ diverge vers $+\infty$ et stigmatise la divergence grossière de $\sum_{n\geq 1} u_n$.

Pour que cette série converge il faut donc que a+b+c=0, ainsi (cf a)) $u_n=\frac{2a+b}{n}+O(\frac{1}{n^2})$ si $n\to +\infty$. Si $2a+b\neq 0$, u_n est une série à termes de signe constant APCR (signe dépendant de celui de 2a+bbien sûr) dont le terme général est équivalent à $\frac{2a+b}{n}$; la divergence de la série harmonique conduit, par

comparaison, à celle de $\sum_{n\geq 1} u_n$.

Il est aussi nécessaire que 2a+b=0. Inversement si les deux conditions précédentes sont acquises alors $u_n = O(\frac{1}{n^2})$ donc, par comparaison, $\sum_{n \ge 1} u_n$ est ACV donc CV \square

c) Pour
$$n \ge 1$$
, on pose $S_n = \sum_{k=1}^n u_k$; il vient $S_n = a(\sum_{k=1}^n ((\ln(k+2) - \ln(k+1)) - (\ln(k+1) - \ln(k))) = a(\sum_{k=1}^n u_k)$

 $\ln(1+\frac{1}{n+1})-\ln 2$, ce par télescopage. En passant à la limite sur n, on récupère que $\sum_{n=1}^{\infty}u_n=-a\ln 2\Box$

d) En revenant à la définition du reste (Somme de la série - somme partielle), on obtient $R_n = -a \ln(1 + a)$ $(\frac{1}{n+1}) \sim -a\frac{1}{n+1}$; ce qui montre la divergence de la série en question sauf si a=0

Exercice 2: (Constante d'Euler)

On définit la suite de terme général u_n pour $n \ge 1$ par la relation:

$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n).$$

- a) Montrer que cette suite est convergente. Sa limite est notée γ .
- b) Déterminer un encadrement de $H_n = \sum_{k=1}^n \frac{1}{k}$ par comparaison série-intégrale (en faisant intervenir

 $x \to 1/x$), ce pour tout $n \ge 1$.

- c) Etablir alors que $\gamma \in [0, 1]$.

d) Prouver par considération d'aire que :
$$u_n - \frac{1}{2n} \le \gamma \le u_n - \frac{1}{2n} + \frac{1}{2n(n+1)}$$
, ce pour $n \ge 1$.

Solution:

- a) Intégralement dans votre cours□
- b) Comparaison série intégrale utilisant la décroissance de la fonction inverse donne $\frac{1}{k} \leq \int_{k-1}^{k} \frac{dx}{x}$ pour

 $k \in [2, n]$ et $\int_{k}^{k+1} \frac{dx}{x}$ pour $k \in [1, n]$. Ainsi en sommant ces inégalités, nous obtenons (encadrement vu en cours et pour tout $n \in \mathbb{N}^*$):

 $\ln(n+1) \le H_n \le 1 + \ln(n)$ donc a fortiori $\ln(n) \le H_n \le 1 + \ln(n)$.

Ce qui implique $0 \le u_n \le 1$

- c) Par conservation des inégalités larges à la limite dans c), on récupère sans peine $0 \le \gamma \le 1$
- d) Question fine corrigée en document annexe et dont la solution s'appuie sur la convexité de la fonction inverse pour les réels strictement positifs.
- e) Il suffit de prendre n=1 dans l'encadrement prouvé en d). Il vient : $[0,5 \le \gamma \le 0,75]$

Rq : Pour n=4 le membre de gauche de l'encadrement d) donne à peu près 0,57, ce qui est déjà une bonne valeur approchée de la constante d'Euler.

Exercice 3: (Zeta 2)

On se propose en un premier temps de déterminer $\zeta(2)=\sum_{n=1}^{\infty}\frac{1}{n^2}$ puis d'en vérifier l'irrationalité.

PARTIE I

Dans cette partie on pose, pour tout t réel : $h(t) = \frac{t^2}{2\pi} - t$, et on définit la fonction ϕ sur $[0, \pi]$ par :

$$\phi(0) = -1$$
 et $\phi(t) = \frac{h(t)}{2\sin\frac{t}{2}}$ pour $t \in]0, \pi].$

- 1) Montrer que la fonction ϕ est de classe C^1 sur l'intervalle $[0,\pi]$.
- 2) Calculer, pour tout k entier naturel non nul, $\int_0^{\pi} h(t) \cos(kt) dt$.
- 3) Calculer, pour $t \in]0,\pi]$: $\sum_{n=0}^{\infty} \cos(kt)$ puis déterminer une constante λ telle que,

$$\forall t \in]0,\pi], \qquad \sum_{k=1}^{n} \cos(kt) = \frac{\sin((n+\frac{1}{2})t)}{2\sin\frac{t}{2}} - \lambda.$$

- 4) Montrer, à l'aide d'une intégration par parties que, pour toute fonction ψ de classe C^1 sur l'intervalle $[0,\pi]$ nous avons : $\int_0^\pi \psi(t) \sin((n+\frac{1}{2})t) dt \to 0$ si $n \to +\infty$.
- 5) Montrer que $\zeta(2) = \frac{\pi^2}{6}$.

PARTIE II

Dans cette partie, pour n entier naturel non nul et x réel, on pose $f_n(x) = \frac{x^n(1-x)^n}{n!}$.

- 6) Dans cette question, n est un entier naturel non nul.
- a) Montrer qu'il existe n+1 entiers $e_n, e_{n+1}, ..., e_{2n}$ tels que $f_n(x) = \frac{1}{n!} \sum_{i=1}^{2n} e_i x^i$.
- b) Montrer que, pour tout entier naturel k, $f_n^{(k)}(0)$ et $f_n^{(k)}(1)$ sont des entiers.

(On pourra remarquer que $f_n(x) = f_n(1-x)$). On veut montrer que π^2 est irrationnel, et on va raisonner par l'absurde : on suppose que $\pi^2 = \frac{a}{b}$, où aet b sont deux entiers naturels non nuls.

7) On pose, pour n entier naturel non nul et x réel :

$$F_n(x) = b^n(\pi^{2n} f_n(x) - \pi^{2n-2} f_n^{(2)}(x) + \pi^{2n-4} f_n^{(4)}(x) - \dots + (-1)^n f_n^{(2n)}(x)).$$

- a) Montrer que $F_n(0)$ et $F_n(1)$ sont des entiers.
- b) On pose, pour n entier naturel non nul et x réel $g_n(x) = F'_n(x)\sin(\pi x) \pi F_n(x)\cos(\pi x)$ et $A_n = \int_0^1 f(x) \sin(\pi x) dx$ $\pi \int_0^1 a^n f_n(x) \sin(\pi x) dx.$

Montrer que, pour n entier naturel non nul et x réel : $g'_n(x) = \pi^2 a^n f_n(x) \sin(\pi x)$ et montrer que A_n est un

- 8) On pose, toujours pour le même entier a $u_n = \frac{a^n}{n!}$.
- a) En considérant le quotient $\frac{u_{n+1}}{u_n}$, prouver que la suite (u_n) converge vers 0.
- b) Vérifier qu'à partir d'un certain rang $A_n \in]0,1[$ et conclure que π^2 est irrationnel.
- c) Comment peut-on en déduire que π est irrationnel?

1) ϕ est C^1 sur $]0,\pi]$ par opérations sur de telles fonctions et $\phi(t)\sim\frac{-t}{t}=-1$ en $0,\phi$ est donc continue sur son intervalle de définition

Pour
$$t \in]0, \pi], \ \phi'(t) = \frac{A(t)}{2(\sin t/2)^2} \text{ avec } A(t) = \left(\frac{t}{\pi} - 1\right) \sin t/2 - \frac{1}{2} \left(\frac{t^2}{2\pi} - t\right) \cos t/2.$$

On a alors, pour $t \to 0$, $A(t) = \frac{t^2}{4\pi} + o(t^2)$; par conséquent :

$$\phi'(t) \underset{t\to 0}{\to} \frac{1}{2\pi}.$$

Toutes ses hypothèses étant satisfaites, le théorème du prolongement des fonctions C^1 s'applique et donne que ϕ est C^1 sur $[0,\pi]\square$

2) Une double IPP (légitimée par le caractère C^{∞} des fonctions présentes) fournit:

$$\int_0^\pi (\frac{t^2}{2\pi} - t) \cos(t) dt = \frac{1}{k^2}, \text{ ce pour tout entier naturel non nul } k \square$$

3) C'est du classique de première année. On calcule d'abord $S = \sum_{i=1}^{n} e^{ikt}$ qui se voit comme une somme géométrique de raison $e^{it} \neq 1(t \in]0,\pi]$).

Ainsi
$$S = e^{it} \frac{e^{int} - 1}{e^{it} - 1}$$
.

La somme à calculer $T=Re(S)=\cos(t/2)\frac{\sin(nt/2)}{\sin(t/2)}$, ce en passant à l'arc moitié dans la formule précédente.

Puis sachant que $\cos(a)\sin(b) = \frac{1}{2} \times (\sin(a+b) - \sin(a-b))$, il vient : $T = \frac{1}{2} \times \frac{\sin(n+1/2)t - \sin(t/2)}{\sin t/2} = \frac{\sin(n+1/2)t}{2\sin t/2} - 1/2.$ On propose donc $\lambda = \frac{1}{2} \square$

$$T = \frac{1}{2} \times \frac{\sin((n+1/2)t) - \sin((t/2))^{2}}{\sin(t/2)} = \frac{\sin((n+1/2)t)}{2\sin(t/2)} - 1/2$$

On propose donc
$$\lambda = \frac{1}{2}$$

4) C'est encore un classique de première année, connu sous le nom de lemme de Riemann-Lebesgue détaillé en classe lundi après-midi.

5) Pour
$$n \ge 1$$
, posons $S_n = \sum_{1}^{n} \int_{0}^{\pi} h(t) \cos(kt) dt = \int_{0}^{\pi} \phi(t) \sin(n+1/2) t dt - \frac{\int_{0}^{\pi} h(t) dt}{2}$, ce grâce linéarité

de l'intégrale de \int et aux questions 2) et 3).

Puis en utilisant le 4) et la convergence notoire des sommes partielles de la série de Riemann d'exposant 2

vers sa somme (à savoir
$$\zeta(2)$$
) et en faisant tendre n vers $+\infty$, nous obtenons $\left[\zeta(2) = -\frac{1}{2}\int_0^{\pi}h(t)dt = \frac{\pi^2}{6}\right]$

(Simple calcul!)■

- 6)a)Simple utilisation du binôme de Newton□
- b) On observe tout d'abord que 0 et 1 sont racines de f_n de multiplicité égale à n.,Par conséquent les dérivées d'ordre $\leq n-1$ de f_n en 0 et 1 sont nulles donc entières.

Ce résultat est aussi vrai pour les dérivées d'ordre > 2n, puisuqe de telles dérivées sont nulles $(deg(f_n) =$

Si $k \in [n, 2n]$, nous disposons (avec a)) de :

$f_n^{(k)}(x) = \sum_{i=k}^{2n} e_i \binom{i}{k} \frac{k!}{n!} x^{i-k}$; sous cette forme il est clair que $f_n^{(k)}(0), f_n^{(k)}(1)$ sont des entiers (l'indication
donnée par l'énoncé s'avère inutile donc) \square
7)a) Résulte de la question précèdente et du fait que $b^n\pi^{2n-2k}\in\mathbb{N}$ si $0\leq k\leq n\square$
b) g_n étant notoirement dérivable sur \mathbb{R} , on a:
$\forall x \in \mathbb{R}, g_n'(x) = \sin \pi x (F_n''(x) + \pi^2 F_n(x)) = \pi^2 a^n f_n(x) \sin \pi x$, ce après implification télescopique.
De plus $A_n = \frac{1}{\pi}(g_n(1) - g_n(0)) = F_n(0) + F_n(1) \in \mathbb{Z} \text{ (par a)}$
8)a) On reconnaît en u_n le terme général d'une série exponentielle, donc convergente. Son terme général
tend donc bien vers $0\square$
b) Pour tout n (majoration par inégalité triangulaire intégrale) : $ A_n \le \pi \frac{a^n}{n!}$ soit par ce qui précède la
convergence de la suite (A_n) vers 0.
Il existe donc bien un entier n (remarquer que $A_n \ge 0$ par positivité de l'intégrale mais ne peut être nul par positivité et non identiquement nullité, continuité de l'intégrande sur $[0,1]$) à partir duquel $A_n \in]0,1[$.
Mais ceci est absurde puisque A_n est un entier.
Il en résulte que π^2 donc $\zeta(2)$ sont des irrationnels
c) Si π était rationnel, π^2 le serait, ce qui ne se peut par b) donc $\pi \notin \mathbb{Q}$
Exercice 4: (Etude d'une série) $n(n+1)$ $(-1)^{a_n}$
Pour tout entier naturel n non nul on pose : $a_n = \frac{n(n+1)}{2}$ et $u_n = \frac{(-1)^{a_n}}{\sqrt{n}}$.
a) La série $\sum_{n\geq 1}u_n$ est-elle absolument convergente? alternée? On justifiera ses réponses.
On pose $v_n = u_{4n+1} + u_{4n+2} + u_{4n+3} + u_{4n+4}$, ce pour tout n non nul. b) Etablir que la série $\sum_{n>1} v_n$ converge.
c) On note (S_n) la suite des sommes partielles de $\sum_{n\geq 1} u_n$. Déduire de la question précédente la convergence
de la suite (S_{4n}) . d) Prouver que $\sum_{n=1}^{\infty} u_n$ converge bien.
n≥1
a) Pour tout $n \ge 1$: $ u_n = \frac{1}{\sqrt{n}}$, on a affaire à une série de Riemann divergente, donc pas de convergence
absolue pour $\sum_{n\geq 1} u_n$.
Dans le même contexte $u_{4n+1}u_{4n+2} > 0$ donc notre série n'est pas alternée \square
Dans le même contexte $u_{4n+1}u_{4n+2} > 0$ donc notre série n'est pas alternée \square b) Pour tout $n \in N$, $v_n = -\left(\frac{1}{\sqrt{4n+1}} + \frac{1}{\sqrt{4n+2}}\right) + \left(\frac{1}{\sqrt{4n+3}} + \frac{1}{\sqrt{4n+4}}\right)$.
En associant le premier terme au troisième et les deux autres, il vient :
$v_n = \frac{\sqrt{4n+3} - \sqrt{4n+1}}{\sqrt{4n+3}\sqrt{4n+1}} + \frac{\sqrt{4n+4} - \sqrt{4n+2}}{\sqrt{4n+4}\sqrt{4n+2}}.$
Avec la quantité conjuguée (plus économique!), on trouve aisément que $v_n = O(\frac{1}{n^{3/2}})$ et montre, par ce
biais, que $\sum_{n\geq 1} v_n$ converge \square
c) La suite $(S_{4n})_{n\geq 1}$ étant la suite des sommes partielles de la série $\sum_{n\geq 1} v_n$, elle converge bien \square
d) Il nous suffit de montrer que la suite (S_n) converge.
Convenons de noter S la limite de la suite $(S_{4n})_{n\geq 1}$ et vérifions que (S_n) converge vers S .
On observe auparavant que la suite (u_n) converge vers 0 et que $S_n = S_{4q} + \sum_{i=4q+1}^{r}$, où q est le quotient de la
division de n par 4 et r le reste; compte tenu des données invoquées, on a bien que $S_n \to S \blacksquare$
Exercice 5 : (Etude de séries trigonométriques) $\cos^2(n) = \sin^2(n)$
Pour tout $n \ge 1$, on pose $u_n = \frac{\cos^2(n)}{n}$ et $v_n = \frac{\sin^2(n)}{n}$.
a) Montrer que l'une au moins des séries $\sum_{n\geq 1} u_n$ ou $\sum_{n\geq 1}^n v_n$ doit diverger.

On suppose que $\sum_{n>1} v_n$ converge.

b) Etablir successivement que : i)
$$\sum_{n\geq 1} \frac{\sin^2(n+1)}{n}$$
 et $\sum_{n\geq 1} \frac{\sin^2(n-1)}{n}$ convergent.

ii)
$$\sum_{n\geq 1}^{n\geq 1} \frac{\sin^2(n+1) + \sin^2(n-1)}{n}$$
 converge.

iii) $\sum_{n\geq 1} u_n$ converge (on explicitera le terme général de la série définie en ii)).

c) Que dire de la nature de $\sum_{n\geq 1} u_n$?

- a) La somme des termes généraux des séries incriminées donne celui de la série harmonique, série notoirea) La somme des termes generaux ues series mermanets $\sum_{n\geq 1} u_n$ ou $\sum_{n\geq 1} v_n$ doit diverger \square
- b)i) Les séries $\sum_{n\geq 1} \frac{\sin^2(n+1)}{n+1}$ et $\sum_{n\geq 2} \frac{\sin^2(n-1)}{n-1}$ convergeant, par principe de comparaison pour les STP, il

en va de même pour $\sum_{n\geq 1} \frac{\sin^2(n+1)}{n}$ et $\sum_{n\geq 1} \frac{\sin^2(n-1)}{n}$

- ii) Simple addition de deux séries convergentes \square
- iii) Avec les formules d'addition du sinus, il vient et pour tout $n \ge 1$: $\frac{\sin^2(n+1) + \sin^2(n-1)}{n} = \frac{\sin^2(n+1) + \sin^2(n+1)}{n}$

 $2(\cos^2(1)v_n + \sin^2(1)v_n)$. Comme $\sin(1) \neq 0$, on récupère la convergence de la série $\sum_{n\geq 1} u_n$, ce qui est absurde voir a) \square

c) Elle diverge aussi pour des raisons analogues

Exercice 6: (Développement en série d'Engel)

On se donne $(q_n)_{n\geq 0}$ une suite croissante d'entiers strictement supérieurs à 1 et croissante et on pose

- a) Etablir que la série $\sum_{n\geq 0} u_n$ converge.
- b) Vérifier que la somme de la série précédente appartient à]0,1].
- c) Prouver que si la suite (q_n) est stationnaire, la somme de la série $\sum_{n\geq 0} u_n$ est un nombre rationnel.
- d) Montrer la réciproque de l'assertion proposée en c).

Solution:

a) On a pour tout $n:0\leq u_n\leq \frac{1}{2^n}$ puisque tous les $q_k\geq 2$. Par simple comparaison $\sum_{n\geq 0}u_n$ converge \square

b) On a bien sûr, en notant S la somme de la série $\sum_{n\geq 0} u_n$, $u_0 \leq S \leq \sum_{n=0}^{\infty} u_n \sum_{n=0}^{\infty} 2^{-n} = 1$.

Comme $u_0 > 0$, le résultat voulu en découle

c) Il existe donc un entier
$$m \ge 1$$
 tel que $\forall n \ge m, q_n = q_m = q$. $S = S_{m-1} + \frac{1}{q_0 \dots q_m} (\frac{1}{1 - 1/q}) \in \mathbb{Q}$ puisque les q_i sont des entiers $> 1 \square$

d) Procédons par l'absurde en posant $S = \frac{p}{q}, (p,q) \in (\mathbb{N}^*)^2$.

Il existe une suite extraite
$$(q_{m_k})$$
 divergeant vers $+\infty$ et pour tout k :
$$S = \frac{p}{q} = \frac{A}{q_0...q_{m_k-1}} + \frac{1}{q_0...q_{m_k-1}} (\sum_{j=m_k}^{\infty} \frac{1}{\prod_{i=m_k}^j q_i})$$

Ce qui donne $\frac{B}{qq_0....q_{m-1}} = \frac{1}{q_0....q_{m-1}} (\sum_{j=m_k}^{\infty} \frac{1}{\prod_{i=m_k}^j q_i}) \text{ où } B \text{ est un entier naturel non nul.}$

Donc après simplification : $\frac{B}{q} \le \frac{1}{q_{m_k}} \sum_{n=0}^{\infty} \frac{1}{q_{m_k}^p} = \frac{1}{q_{m_k}-1}$. Non tenable pour tout k puisque le minorant est

> 0 et que le majorant tend vers 0 si $k \to +\infty$

Exercice 7: (Nombre de Liouville)

- a) Justifier l'existence du réel $\alpha = \sum_{n=0}^{\infty} \frac{1}{2^{n!}}$.
- b) En s'inspirant de la preuve de l'irrationalité de e^{-1} , établir celle de α .
- c) Généraliser.

Solution:

- a) Car terme général, noté u_n , positif et $\leq 2^{-n}\square$ b) Supposons que $\alpha = \frac{p}{q}$, $(p,q) \in (\mathbb{N}^*)^2$ et notons (S_n) la suite des sommes partielles de la série dont α est la somme.

Alors pour tout
$$n: 0 < \alpha - S_n \le \frac{1}{2^{(n+1)!}} (\sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{1}{2^{(n+1)!-1}}.$$

Mais $\alpha - S_n = \frac{A_n}{q2^{n!}}$, ce qui montre que cette inégalité est en défaut pour n assez grand \square

c) on peut sans dommage remplacer 2 par un entier supérieur ou égal à $2\blacksquare$