Séance du 10/09 (Corrigé)

Exercice 1: (En vrac)

Déterminer la nature des séries de terme général donné (et noté u_n) ci dessous :

- a) $\sqrt{n^2 + n + 1} \sqrt{n^2 n + 1}$ (ind : DL et équivalent).
- b) $\exp(-\sqrt{\ln(n)})$ (Minoration).
- c) $u_n = \begin{cases} 0 & \text{si n n'est pas un carr\'e parfait} \\ \frac{1}{n} & \text{sinon.} \end{cases}$

(ind : Majorer les sommes partielles en utilisant $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2}$).

d) $u_n = \ln(\tanh(n))$ (ind : équivalent).

Solution:

On rappelle deux points :

$$\frac{\tanh(x)}{x \to +\infty} \xrightarrow{1}$$

$$\ln(t) \underset{t \to 1}{\sim} t - 1.$$

Dès lors puisque $\tanh(n) \underset{n \to +\infty}{\to} 1$, $u_n \sim (\tanh(n) - 1 = -\frac{2e^{-n}}{e^n + e^{-n}}$ (en utilisant l'exponentielle pour exprimer les fonctions hyperboliques).

Finalement $|u_n| \sim 2(e^{-2})^n$. La série géométrique $\sum_{n=0}^{\infty} (e^{-2})^n$ convergeant (raison strictement comprise entre

0 et 1), il en résulte que notre série ACV donc CV \blacksquare

- e) $(1+\frac{1}{n})^n-e$ (ind : DL et équivalent).
- $(1+\frac{1}{n})^n = \exp(n\ln(1+1/n)) = \exp(1-1/2nO(1/n^2))$ donc $u_n = e(\exp(-1/2nO(1/n^2)-1))$.

En utilisant l'équivalent usuel (en 0) $e^x - 1 \sim x$, il vient $u_n \sim \frac{-e}{2n}$, ce qui, par comparaison des séries de signe constant APCR, montre la divergence de notre série

Exercice 2: (CCP)

Nature de $\sum_{n\geq 0} \frac{a^n}{1+b^n}$ où a et b sont des réels strictement positifs? (Chercher un équivalent du terme général).

$$u_n \sim \begin{cases} a^n & \text{si b } < 1\\ \frac{a^n}{2} & \text{si b } = 1\\ (\frac{a}{b})^n & \text{sinon} \end{cases}.$$

Il en résulte qu'il y a convergence si et seulement si a < 1 et $b \ge 1$ ou a < b et $b \ge 1$

Exercice 3: (Classique Oral Mines)

Nature de la série de terme général $u_n = a\sqrt{n+2} + b\sqrt{n+1} + c\sqrt{n}$ avec a,b,c réels . Calcul de la somme dans le cas de convergence.

(ind : Développement asymptotique du terme général).

Exercice 4: (Centrale)
Nature de
$$\sum_{n\geq 0} \frac{n!}{n^{kn}}, k>0.$$

(ind : D'Alembert).

Solution:

Comme la série est à termes strictement positifs, on peut penser à la règle de d'Alembert. On a, pour tout
$$n$$
, $\frac{u_{n+1}}{u_n} = (n+1)^{1-k}(1+1/n)^{-kn}$.

Comme (cf exercice 1 e)), $(1+1/n)^n \to e$, nous obtenons : i) si k > 1, $\frac{u_{n+1}}{u_n} \to 0 < 1$

ii) si
$$k=1,$$
 $\frac{u_{n+1}}{u_n} \to e^{-k} < 1$ (car $k>0$)
iii) si $k<1,$ $\frac{u_{n+1}}{u_n} \to +\infty > 1$

iii) si
$$k < 1$$
, $\frac{u_{n+1}}{u_n} \to +\infty > 1$

La série en jeu converge ssi $k \ge 1$

Exercice 5: (Convergence d'une suite?)

Etude de la convergence de la suite (v_n) , où, pour tout n:

$$u_n = \sum_{k=1}^n \cosh(\frac{1}{\sqrt{n+k}}) - n.$$

On va utiliser le lien suite-série en posant $v_n = u_{n+1} - u_n$, ce pour tout n.

Un travail simple de changement d'indice montre que, ce pour tout
$$n: v_n = \cosh(\frac{1}{\sqrt{2n+2}}) + \cosh(\frac{1}{\sqrt{2n+1}}) - \cosh(\frac{1}{\sqrt{n+1}}) - 1.$$

$$v_n = \frac{1}{2}(\frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}) + O(1/n^2)$$
 ou (après réduction au même dénominateur)

Comme $\cosh(x) = 1 + \frac{x^2}{2} + O(x^4)$ pour $x \to 0$, on obtient : $v_n = \frac{1}{2}(\frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}) + O(1/n^2) \text{ ou (après réduction au même dénominateur)}$ $v_n = O(1/n^2). \text{ Par comparaison la série } \sum_{n \ge 1} v_n \text{ converge et, par le lien suite-série, la suite } (u_n) \text{ converge bien} \blacksquare$