TD 2 : Séries (II) . Corrigé partiel

On note u_n le terme général des séries à étudier si ce n'est pas spécifié.

Exercice 1 : (Navale)
Nature de
$$\sum \frac{(-1)^n}{\sqrt{n^{\alpha}+(-1)^n}}, \alpha > 0$$
? (ind : DL)

Solution:
$$|u_n| \sim \frac{1}{n^{\frac{\alpha}{2}}} \text{ donc ACV ssi } \alpha > 2.$$

Pour les cas restants, on réorganise l'expression de u_n : $u_n = \frac{(-1)^n}{n^{\frac{\alpha}{2}}} (1 + \frac{(-1)^n}{n^{\alpha}})^{-1/2}$.

En utilisant le
$$DL_1$$
 de $x \to (1+x)^{-1/2}$, il vient : $u_n = \frac{(-1)^n}{n^{\frac{\alpha}{2}}} - \frac{1}{2} \frac{1}{n^{\frac{3\alpha}{2}}} + o(\frac{1}{n^{\frac{3\alpha}{2}}}).(*)$

En utilisant le DL_1 de $x \to (1+x)^{-1/2}$, il vient : $u_n = \frac{(-1)^n}{n^{\frac{\alpha}{2}}} - \frac{1}{2} \frac{1}{n^{\frac{3\alpha}{2}}} + o(\frac{1}{n^{\frac{3\alpha}{2}}}).(*)$ Comme $\alpha > 0$, la série (de Riemann alternée) $\sum \frac{(-1)^n}{n^{\frac{\alpha}{2}}}$ converge et ainsi $u_n - \frac{(-1)^n}{n^{\frac{\alpha}{2}}} = v_n$ est le TG d'une

série de même nature que $\sum u_n$. Or (*) montre que $v_n \sim -\frac{1}{2} \frac{1}{n^{\frac{3\alpha}{2}}}$, par principe de comparaison des séries à termes de signe constant APCR, il y a donc convergence ssi $\alpha > 2/3$

Exercice 2 : (CCP Banque)
Nature de
$$\sum \cos \left(\pi \sqrt{n^2 + n + 1}\right)$$
?

Exercice 3: (Type CCP)

Que dire d'une série de terme général:
$$\frac{(-1)^n}{n^{1/3}} + \frac{2}{n^{2/3}} + o\left(\frac{1}{n^{5/3}}\right)$$
?

Exercice 4: (CCP Banque)

Pour
$$x, \alpha$$
 réels ,étudier la nature de $\sum \frac{(-1)^n e^{-nx}}{n^{\alpha}}$.

Solution:

Pour x < 0 ou $(x = 0 \text{ et } \alpha \le 0)$, cette série diverge grossièrement. Elle est semi-convergente si x = 0 et $0 < \alpha \le 1$ et ACV dans tous les autres cas

Exercice 5: (Etude d'une série semi-convergente)

Pour
$$n \ge 1$$
, on pose $u_n = \frac{\cos(2n\pi/3)}{n}$ et $v_n = u_{3n-2} + u_{3n-1} + u_{3n}$.

- 0) $\sum u_n$ est-elle absolument convergente?
- 1) Prouver que $\sum v_n$ converge.

On note, pour $n \ge 1$, $S_n = \sum_{k=1}^n u_k$.

- 2) Déduire de 1) que $(S_{3n})_{n\geq 1}^{k=1}$ converge. Prouver que $(S_{3n+i})_{n\geq 0}$ convergent aussi vers la même limite, notée L, que $(S_{3n})_{n\geq 1}$. Que peut-on en déduire?
- 3) En revenant à la définition de u_n et à l'aide de télescopage, exprimer S_{3n} en fonction des sommes partielles de la série harmonique. Déterminer alors L.

Solution:

- 0) Pour tout $n \ge 1 : |u_n| \ge \frac{1}{2n}$; ce qui interdit la convergence absolue. 1) Pour tout $p \ge 0 : v_{p+1} = \frac{1}{3p} \frac{1}{2}(\frac{1}{3p+1} + \frac{1}{3p+2}) = \frac{9p+4}{12p+54p^2+54p^3} \sim \frac{1}{6p^3} \square$
- 2) Pour tout $n \ge 1$: $S_{3n} = \sum_{p=1} v_p$; (S_{3n}) converge bien puisque $\sum v_p$ est une série convergente.

Puisque la suite (u_n) converge vers 0, les suites extraites $(S_{3n+1}), (S_{3n+2})$ convergent vers la même limite

que (S_{3n}) . C'est un exercice classique de sup qui permet alors d'affirmer que (S_n) converge

3) On peut écrire $v_p = \frac{3/2}{3p} - \frac{1}{2}(\frac{1}{3p-1} + \frac{1}{3p-2} + frac13p)$ pour tout p entier naturel non nul. Ainsi $S_{3n} = \frac{1}{2}(H_n - H_3n) = \frac{1}{2}(\ln n + \gamma - \ln(3n) - \gamma) + o(1)$. En passant à la limite sur n, nous obtenons $L = -\frac{\ln 3}{2}$

Exercice 6: (Mines)

Nature de
$$\sum \ln \left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+4}} \right)$$
?

Solution :

On peut observer en préambule que cette série n'est pas grossièrement divergente (puisque $\frac{\sqrt{n} + (-1)^n}{\sqrt{n+4}} \rightarrow 1$).

De plus
$$u_n = \ln(\sqrt{n} + (-1)^n) - \ln(\sqrt{n+4}) = \frac{\ln(n)}{2} + \ln(1 + \frac{(-1)^n}{\sqrt{n}}) - \frac{\ln(n)}{2} - \ln(1 + 4/n).$$

En utilisant le fait que
$$\ln(1+x) = x + O(x^2)$$
 si $x \to 0$, il vient $u_n = \frac{(-1)^n}{\sqrt{n}} - 4/n + O(1/n^2)$.

Le TG se présente comme la somme d'un TG d'une série convergente (alternée CV + ACV) et d'un TG d'une série DV (Riemann) donc notre série diverge■

Exercice 7: (Produit de Cauchy)

On pose, pour tout
$$n \ge 1$$
, $u_n = \frac{(-1)^n}{\sqrt{n}}$ et on prend $u_0 = 0$.

Montrer que le produit de Cauchy de cette série par elle même est une série grossièrement divergente.

Exercice 8: (Somme d'une série)

Pour tout
$$n: u_n = \sum_{p=0}^n \frac{(-1)^{n-p}}{(p+1)(p+2)(n-p)!}.$$

- 1) Prouver que $\sum u_n$ converge absolument.
- 2) En déterminer la somme.

Exercice 9: (X)

- a) Existe-t-il une série à termes complexes $\sum u_n$ convergeant mais telle que $\sum u_n^3$ diverge.
- b) Même question avec séries à termes réels.

Solution

En utilisant la méthode employée dans le début de l'exercice 5 (questions 1) et 2)), on prouve que la série à termes complexes $\sum_{n\geq 1} \frac{j^n}{n^{1/3}}$, où $j=\exp(\frac{2i\pi}{3})$ converge.

- a) On pose pour tout $n \ge 1$: $u_n = \frac{j^n}{n^{1/3}}$. Alors $u_n^3 = \frac{1}{n}$. La réponse est donc OUI \square
- b) Oui encore en posant $n \ge 1$: $u_n = \frac{\cos(2n\pi/3)}{n^{1/3}}$: alors (simple linéarisation : $\cos^3(x) = \frac{\cos(3x) + 3\cos(x)}{4}$ pour x réel) $\sum u_n^3$ diverge en vertu de l'exercice 5 et de la divergence de la série harmonique

Exercice 10: (ENS)

Nature de la série dont le terme général est le reste d'ordre n de la série harmonique alternée?