▶ Exercice 1

On considère la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

- 1. On pose $N = A I_3$. Calculer N^2 , N^3 puis N^n pour tout $n \in \mathbb{N}^*$.
- 2. Calculer A^n pour tout $n \in \mathbb{N}^*$. Penser au binôme de Newton en justifiant.

► Exercice 2

On donne la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

- 1. Calculer les matrices A^2 , A^3 , A^4 , A^5 .
- 2. Conjecturer le résultat de A^n en fonction de n pour tout entier naturel n.
- 3. Démontrer la conjecture.

► Exercice 3

Cas des matrices stochastiques

Partie I

Un exemple pour démarrer

Soit
$$M = \begin{pmatrix} 0.44 & 0.24 \\ 0.56 & 0.76 \end{pmatrix}$$
.

- 1. Déterminer M^n pour n = 2,3,4 et 5. Quelle conjecture peut-on émettre?
- 2. Vérifier que M = A + 0.2B avec $A = \begin{pmatrix} 0.3 & 0.3 \\ 0.7 & 0.7 \end{pmatrix}$ et $B = = \begin{pmatrix} 0.7 & -0.3 \\ -0.7 & 0.3 \end{pmatrix}$
- 3. Calculer AB et BA.
- 4. Démontrer que $\forall n \in \mathbb{N}^*$, $A^n = A$ et $B^n = B$.
- 5. Démontrer que $\forall n \in \mathbb{N}^*$, $M^n = A + 0.2^n B$. Conclure

Partie II

Généralisation

- 1. Soient x et y deux nombres réels tels que x+y=1 et soient les matrices $A=\begin{pmatrix} x & x \\ y & y \end{pmatrix}$ et $B=\begin{pmatrix} y & -x \\ -y & x \end{pmatrix}$. Calculer AB et BA.
- 2. Démontrer que pour tout $n \ge 1$, $A^n = A$ et $B^n = B$.
- 3. Soit la matrice $M = \begin{pmatrix} p & q \\ 1-p & 1-q \end{pmatrix}$ où p et q désignent des nombres réels tels que $p-q \neq 1$.

Montrer que M = A + (p - q)B, où A et B sont des matrices $A = \begin{pmatrix} x & x \\ y & y \end{pmatrix}$ et $B = \begin{pmatrix} y & -x \\ -y & x \end{pmatrix}$ avec $x = \frac{q}{1 - p + q}$ et $y = \frac{1 - p}{1 - p + q}$.

- 4. Démontrer que $\forall n \in \mathbb{N}^*$, $M^n = A + (p-q)^n B$.
- 5. Dans le cas où |p-q| < 1, que peut-on dire des coefficients de la matrice M^n lorsque n tend vers $+\infty$?

► Exercice 4 Flux entre deux aquariums

Deux aquariums A et B d'un magasin d'aquariophilie sont communicants.

On a constaté que chaque jour, 80% des poissons de l'aquarium A passent dans le B et que 45% de ceux de l'aquarium B passent dans le A.

On définit, pour tout $n \in \mathbb{N}$; la matrice colonne $X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$, où a_n désigne la population de poissons dans l'aquarium A et b_n désigne la population de poissons dans l'aquarium B, n jours après le premier jour d'observation.

On suppose que le premier jour d'observation les populations de poissons sont équiréparties entre les deux aquariums.

- 1. Déterminer la matrice carrée M telle que, pour tout $n \in \mathbb{N}$, $X_{n+1} = MX_n$.
- 2. Déterminer un état stable pour les flux de circulation des poissons entre les deux aquariums.
- 3. (a) Vérifier que M = P 0.25Q, où $P = \begin{pmatrix} 0.36 & 0.36 \\ 0.64 & 0.64 \end{pmatrix}$ et $Q = \begin{pmatrix} 0.64 & -0.36 \\ -0.64 & 0.36 \end{pmatrix}$.
 - (b) Calculer $P \times Q$ et $Q \times P$.
 - (c) Justifier que, pour tout $n \in \mathbb{N}^*$, $P^n = P$ et $Q^n = Q$.
 - (d) Démontrer que, pour tout $n \in \mathbb{N}^*$, $M^n = P + (-0.25)^n Q$.
 - (e) Démontrer que pour tout $n \ge 2$, $a_n > 0.35$. Interpréter ce résultat.

► Exercice 5

Suite de Fibonacci et nombre d'or

Partie III

Les premiers termes

On considère la suite de nombres réels définis par $u_0=1$, $u_1=1$ et pour tout $n\in\mathbb{N}$, $u_{n+2}=u_{n+1}+u_n$.

- 1. Calculer les 20 premiers termes de la suite.
- 2. Avec la calculatrice, déterminer les premiers termes de la suite des quotients $\frac{u_{n+1}}{u_n}$. Faire une conjecture.
- 3. On définit pour tout $n \in \mathbb{N}$, la matrice colonne $X_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$.
 - (a) Déterminer une matrice carrée A telle que pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$.
 - (b) En déduire un procédé de calcul direct de u_{20} en utilisant la calculatrice.

Partie IV

Le terme général

- 1. Vérifier que les matrices $P = \begin{pmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{pmatrix}$ et $Q = \begin{pmatrix} \frac{5-\sqrt{5}}{10} & \frac{\sqrt{5}}{5} \\ \frac{5+\sqrt{5}}{10} & -\frac{\sqrt{5}}{5} \end{pmatrix}$ sont inverses l'une de l'autre.
- 2. Démontrer que la matrice A est égale au produit des matrices $P \times D \times P^{-1}$, où $D = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}$.
- 3. Démontrer que, pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.
- 4. En déduire que pour tout $n \in \mathbb{N}$, $u_n = \frac{5+\sqrt{5}}{10} \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{5-\sqrt{5}}{10} \left(\frac{1-\sqrt{5}}{2}\right)^n$.

Partie V

Comportement asymptotique

Calculer la limite de la suite (u_n) .

► Exercice 6

Soit
$$A = \begin{pmatrix} 5 & -4 & 2 \\ 14 & -10 & 4 \\ 16 & -10 & 3 \end{pmatrix}$$

- 1. Soient $X_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ et $X_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$. Calculer AX_1 , AX_2 , AX_3 . Que peut-on remarquer?
- 2. Soit P la matrice formée par les trois vecteurs colonne (X_1, X_2, X_3) . Démontrer que P est inversible et calculer P^{-1} .
- 3. Calculer $P^{-1}AP$
- 4. En déduire une expression de A^n .

▶ Exercice 7

Soient
$$(u_n)$$
, (v_n) et (w_n) définies par
$$\left\{ \begin{array}{l} u_0 = 1 \\ v_0 = 2 \\ w_0 = 3 \end{array} \right. \quad \left\{ \begin{array}{l} u_{n+1} = 2u_n - v_n - w_n + 1 \\ v_{n+1} = -2u_n + 4v_n - 2w_n + 5 \\ w_{n+1} = -3v_n + 3w_n - 1 \end{array} \right. \quad \text{On note}$$

$$X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$

- 1. Trouver deux matrices $A \in \mathcal{M}_3(\mathbb{R})$ et $B \in \mathcal{M}_{3,1}(\mathbb{R})$ telles que pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n + B$.
- 2. On pose $S = I_3 A$
 - (a) Montrer que S est inversible et déterminer S^{-1}
 - (b) Montrer qu'il existe un unique vecteur Z tel que AZ + B = Z. Le déterminer.
- 3. On pose $Y_n = X_n Z$. Démontrer que pour tout $n \in \mathbb{N}$, $Y_{n+1} = A^n Y_0$.
- 4. Calcul de A^n :

Soient
$$M = \begin{pmatrix} 2 & -1 & -1 \\ 0 & 0 & 0 \\ -2 & 1 & 1 \end{pmatrix}$$
 et $L = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 2 & -1 \\ 1 & -2 & 1 \end{pmatrix}$

- (a) Calculer M^2 , L^2 , ML et LM.
- (b) En remarquant que A = M + 2L, calculer A^n pour tout $n \in \mathbb{N}^*$.
- 5. En déduire une expression de u_n , v_n et w_n en fonction de n.

► Exercice 8

On dit qu'une matrice A est *nilpotente* s'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$.

Soit
$$A = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$$
.

- 1. Démontrer que A-I est nilpotente et en déduire les puissances de A.
- 2. On définit les suites (u_n) et (v_n) par $u_0=2$ et $v_0=1$ et pour tout $n\in\mathbb{N},$ $\begin{cases} u_{n+1}=5u_n-4v_n\\ v_{n+1}=4u_n-3v_n \end{cases}.$ Donner l'expression des termes généraux u_n et v_n en fonction de n.

► Exercice 9

On considère l'ensemble $\mathcal M$ des matrices carrées de taille 2 de la forme :

$$A_{\lambda} = \begin{pmatrix} 1 & \lambda \\ -\frac{1}{\lambda} & -1 \end{pmatrix}, \ \lambda \in \mathbb{R}^*$$

1. (a) Montrer que si A_{λ} et A_{μ} sont deux éléments de \mathcal{M} , on a :

$$A_{\lambda}A_{\mu} = A_{\mu}A_{\lambda} \iff \lambda = \mu.$$

- (b) Montrer que $A_{\lambda}A_{\mu} + A_{\mu}A_{\lambda} = h(\lambda,\mu)I$, où $h(\lambda,\mu)$ est un nombre réel et I est la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Montrer que $h(\lambda,\mu)=0$ si et seulement si $\lambda=\mu$. que peut-on dire de A_{λ}^2 ?
- (c) Calculer $(A_{\lambda} + A_{\mu})^2$.
- 2. (a) Pour tout entier $n \ge 1$, montrer que :

$$(A_{\lambda} + A_{\mu})^{2n} = (-1)^n \frac{(\lambda - \mu)^{2n}}{(\lambda \mu)^n} I.$$

3

(b) Prouver que $(A_{\lambda} + A_{2\lambda})^{2n}$ ne dépend pas de λ .

3. On dit qu'une matrice $\begin{pmatrix} a(x) & b(x) \\ c(x) & d(x) \end{pmatrix}$ dont les éléments dépendent d'un paramètre x, possède une limite lorsque x tend vers $+\infty$ s'il existe une matrice $L = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ telle que :

$$\alpha = \lim_{x \to +\infty} a(x) \quad \beta = \lim_{x \to +\infty} b(x)$$
$$\gamma = \lim_{x \to +\infty} c(x) \quad \delta = \lim_{x \to +\infty} d(x)$$

- (a) Montrer que la matrice $C_n = \sum_{p=1}^n (A_\lambda + A_{2\lambda})^{2p}$ a, pour n tendant vers $+\infty$, une limite que l'on calculera.
- (b) Exprimer la matrice $B_n = \sum_{p=1}^n (A_p + A_{p+1})^2$.
- (c) Montrer que la matrice B_n a, lorsque n tend vers $+\infty$, une limite que l'on calculera.

▶ Exercice 10

Soit la matrice $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Soit la suite u définie par $u_0 = 0$ et $u_1 = 1$ et pour tout entier naturel n, $u_{n+2} = u_{n+1} + 2u_n$.

- 1. Calculer A^2 . Exprimer A^2 en fonction de A et I_3 .
- 2. Pour $n \in \mathbb{N}^*$, exprimer A^n en fonction de A, I, u_n et u_{n-1} .

▶ Exercice 11

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. On note tr(A) = a + d la trace de A et det(A) = ad - bc le déterminant de A.

- 1. Montrer que $A^2 \operatorname{tr}(A)A + \operatorname{det}(A)I_2 = \mathbf{0}$.
- 2. Montrer qu'il existe deux suites réelles (a_n) et (b_n) telles que

$$\forall n \in \mathbb{N}, \ a_n A + b_n I_2.$$

On exprimera a_{n+1} et b_{n+1} en fonction de a_n , b_n , tr(A) et det(A).

- 3. Vérifier que, pour tout $n \in \mathbb{N}$, $a_{n+2} = \operatorname{tr}(A) a_{n+1} \operatorname{det}(A) a_n$.
- 4. **Application** : On suppose ici que $A = \begin{pmatrix} 1 & -4 \\ -1 & -2 \end{pmatrix}$.
 - (a) Déterminer A_n pour tout $n \in \mathbb{N}$.
 - (b) Vérifier que la matrice A est inversible. La formule obtenue à la question précédente est-elle valable pour n=-1.

4