Mathématiques

Chapitre B2

Ensembles

MPSI - Lycée Bellevue - Toulouse

Année 2024-2025

I. Ensembles

I. Ensembles

II. Applications

I. Ensembles

II. Applications

III. Relations binaires

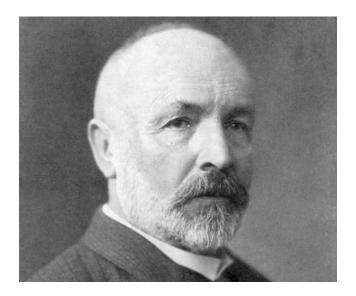
I. Ensembles

- A. Appartenance et inclusion
- B. Opérations sur les parties d'un ensemble
- C. Produit cartésien

II. Applications

III. Relations binaires

Georg Cantor (Allemand) 1845 – 1918



I. Ensembles

- A. Appartenance et inclusion
- B. Opérations sur les parties d'un ensemble
- C. Produit cartésien

Définitions : Appartenance, élément

Soit E un ensemble.

x est 'el'ement de E $\iff x \text{ appartient \`a } E$ $\text{not\'e} \quad x \in E$

Définitions : Appartenance, élément

Soit E un ensemble.

x est élément de E

 \iff x appartient à E

noté $x \in E$

x n'appartient pas à E

noté $x \notin E$

⊢A. Appartenance et inclusion

Définition

Ensemble vide : l'ensemble qui ne contient aucun élément.

$$\varnothing = \{\}$$

Définitions : Inclusion, égalité

A, B sous-ensembles d'un ensemble E.

$$A \subseteq B \quad \text{ ou } \quad A \subset B$$

$$\iff \quad \forall a \in E \quad (a \in A \implies a \in B)$$

Définitions : Inclusion, égalité

A, B sous-ensembles d'un ensemble E.

$$A \subseteq B \quad \text{ou} \quad A \subset B$$

$$\iff \forall a \in E \quad (a \in A \implies a \in B)$$

$$A = B$$

$$\iff A \subset B \quad \text{et} \quad B \subset A$$

$$\iff \forall a \in E \quad (a \in A \iff a \in B)$$

A. Appartenance et inclusion

Remarques

(i) On démontre souvent l'égalité de deux ensembles par double inclusion.

Remarques

- (i) On démontre souvent l'égalité de deux ensembles par double inclusion.
- (ii) $A \not\subseteq B$ s'écrit

$$\exists a \in A \qquad a \not\in B$$

Remarques

- (i) On démontre souvent l'égalité de deux ensembles par double inclusion.
- (ii) $A \not\subseteq B$ s'écrit

$$\exists a \in A \qquad a \not\in B$$

(iii) Une inclusion $A\subseteq B$ est dite stricte si on n'a pas égalité. On note

$$A \subsetneq B$$

A. Appartenance et inclusion

Exemple 1

 $\mathbb{N}\varsubsetneq\mathbb{Z}\varsubsetneq\mathbb{Q}\varsubsetneq\mathbb{R}\varsubsetneq\mathbb{C}$

Définition

A est un sous-ensemble de E

A est une partie de E

 $\iff A \subseteq E$

└I. Ensembles

A. Appartenance et inclusion

Notation

 $\mathcal{P}(E)$: ensemble des parties de E

A. Appartenance et inclusion

Notation

$$\mathcal{P}(E)$$
: ensemble des parties de E

Exemple

$$E = \{a, b\}$$

$$\mathcal{P}(E) =$$

A. Appartenance et inclusion

Notation

 $\mathcal{P}(E)$: ensemble des parties de E

Exemple

$$E = \{a, b\}$$

$$\mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

Notation

 $\mathcal{P}(E)$: ensemble des parties de E

Exemple

$$E = \{a, b\}$$

$$\mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

⊳ Exercice 1.

Décrire $\mathcal{P}(E)$ si $E = \{a, b, c\}$.

A. Appartenance et inclusion

Remarques

(i) Pour toute partie A de E:

$$\varnothing\subseteq A\subseteq E$$

Remarques

- (ii) La relation \subseteq est une relation d'ordre sur $\mathcal{P}(E)$ car elle est
 - ► réflexive $\forall A \subseteq E$ $A \subseteq A$
 - ▶ antisymétrique $\forall A, B \subseteq E$ $(A \subseteq B \text{ et } B \subseteq A) \Longrightarrow A = B$
 - ▶ transitive $\forall A, B, C \subseteq E \quad (A \subseteq B \text{ et } B \subseteq C) \Longrightarrow A \subseteq C$

I. Ensembles

- A. Appartenance et inclusion
- B. Opérations sur les parties d'un ensemble
- C. Produit cartésien

Définitions

A, B parties de E

Complémentaire $\overline{A} = \{x \in E \mid x \notin A\}$

Définitions

A, B parties de E

Intersection
$$A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}$$

Union
$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$

Définitions

A, B parties de E

Intersection
$$A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}$$

Union
$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$

Différence
$$A \setminus B = \{x \in E \mid x \in A \text{ et } x \notin B\}$$

Proposition - Règles de calcul

Soit A, B, C trois parties d'un ensemble E.

Proposition - Lois de De Morgan

A, B parties de E

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Proposition - Lois de De Morgan

A, B parties de E

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

<u>Démonstration</u>. Grâce aux connnecteurs logiques. □

Proposition - Distributivités

A, B, C parties de E

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proposition - Distributivités

A, B, C parties de E

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Démonstration.

Proposition - Distributivités

A, B, C parties de E

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Démonstration.

Remarque

A, B parties de E et x élément de E

$$x \in A \cap B \iff$$

$$x \in A \cup B \iff$$

$$x \in \overline{A}$$
 \iff

Remarque

A, B parties de E et x élément de E

$$x \in A \cap B \iff x \in A \text{ et } x \in B$$

$$x \in A \cup B \iff$$

$$x \in \overline{A}$$
 \iff

Remarque

 $A,\ B$ parties de E et x élément de E $x\in A\cap B\iff x\in A\quad \text{et}\quad x\in B$ $x\in A\cup B\iff x\in A\quad \text{ou}\quad x\in B$

$$x \in \overline{A}$$
 \iff

Remarque

 $A,\ B$ parties de E et x élément de E $x\in A\cap B\iff x\in A\quad \text{et}\quad x\in B$ $x\in A\cup B\iff x\in A\quad \text{ou}\quad x\in B$

$$x \in \overline{A} \qquad \iff x \notin A$$

Remarque (suite)

A, B parties de E

$$A \subseteq B \iff (\forall x \in E)$$

$$A = B \iff (\forall x \in E)$$

Remarque (suite)

A, B parties de E

$$A \subseteq B \iff (\forall x \in E \mid x \in A \Longrightarrow x \in B)$$

$$A = B \iff (\forall x \in E)$$

Remarque (suite)

A, B parties de E

$$A \subseteq B \iff (\forall x \in E \mid x \in A \Longrightarrow x \in B)$$

$$A = B \iff (\forall x \in E \mid x \in A \iff x \in B)$$

⊳ Exercice 2.

A, B parties de E. Démontrer que

$$A \cup B = A \iff B \subseteq A$$

$$A \cap B = A \iff A \subseteq B$$

⊳ Exercice 3.

Démontrer que

$$(A \cup B) \cap (\overline{A} \cup \overline{B}) = (A \setminus B) \cup (B \setminus A)$$

et que cette dernière union est disjointe, i.e., :

$$(A \setminus B) \cap (B \setminus A) = \emptyset$$

Chapitre B2. Ensembles

I. Ensembles

- A. Appartenance et inclusion
- B. Opérations sur les parties d'un ensemble
- C. Produit cartésien

E, F deux ensembles

Produit cartésien de E et de F :

$$E \times F = \{(x, y) \mid x \in E \text{ et } y \in F\}$$

(x,y) : couple

 E_1, \ldots, E_n ensembles.

Produit cartésien des E_i :

$$E_1 \times \cdots \times E_n = \{(x_1, \dots, x_n) |$$

$$\forall i = 1 \dots n \quad x_i \in E_i \}$$

 E_1, \ldots, E_n ensembles.

Produit cartésien des E_i :

$$E_1 \times \cdots \times E_n = \{(x_1, \dots, x_n) |$$

$$\forall i = 1 \dots n \quad x_i \in E_i \}$$

$$(x_1,\ldots,x_n)$$
: n -uplet

 E_1, \ldots, E_n ensembles.

Produit cartésien des E_i :

$$E_1 \times \cdots \times E_n = \{(x_1, \dots, x_n) |$$

$$\forall i = 1 \dots n \quad x_i \in E_i \}$$

$$(x_1,\ldots,x_n)$$
: n -uplet

Si tous les E_i sont égaux

$$E^n = E \times \cdots \times E$$

└I. Ensembles

C. Produit cartésien

Exemples (i) \mathbb{R}^2 \mathbb{R}^3

C. Produit cartésien

Exemples

- (i) \mathbb{R}^2 \mathbb{R}^3
- (ii) Soit $E = \{a, b, c\}$ et $F = \{1, 2\}$. Alors $E \times F =$

└C. Produit cartésien

Exemples

- (i) \mathbb{R}^2 \mathbb{R}^3
- (ii) Soit $E = \{a, b, c\}$ et $F = \{1, 2\}$. Alors $E \times F = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$

⊳ Exercice 4.

Soit $E=\{a,b,c\}$ et $F=\{1,2\}$. Décrire E^2 et F^3 .

Chapitre B2. Ensembles

I. Ensembles

II. Applications

- A. Généralités
- B. Injections, surjections, bijections
- C. Cas des fonctions réelles

III. Relations binaires

Chapitre B2. Ensembles

II. Applications

- A. Généralités
- B. Injections, surjections, bijections
- C. Cas des fonctions réelles

E, F deux ensembles non-vides.

Une application de E dans F associe à tout élément de E un unique élément de F.

$$f: E \longrightarrow F$$

 $x \longmapsto f(x)$

E, F deux ensembles non-vides.

Une application de E dans F associe à tout élément de E un unique élément de F.

$$f: E \longrightarrow F$$
$$x \longmapsto f(x)$$

Notation

Ensemble des applications de E dans F:

$$\mathcal{F}(E,F)$$
 ou F^E

A. Généralités

Définitions

$$f: E \to F$$
 $A \subseteq E$ $B \subseteq F$

└A. Généralités

Définitions

$$f: E \to F$$
 $A \subseteq E$ $B \subseteq F$

(i) Image de A par f:

$$f(A) = \{ f(x) \mid x \in A \} \subseteq F$$

(ii) Image réciproque de B par f :

$$f^{-1}(B) = \{ x \in E \mid f(x) \in B \} \subseteq E$$

Ainsi la donnée de $f:E\to F$ permet de définir deux nouvelles fonctions :

$$f: \mathcal{P}(E) \longrightarrow \mathcal{P}(F)$$
 $f^{-1}: \mathcal{P}(F) \longrightarrow \mathcal{P}(E)$
 $A \longmapsto f(A)$ $B \longmapsto f^{-1}(B)$

Ainsi la donnée de $f:E\to F$ permet de définir deux nouvelles fonctions :

$$f: \mathcal{P}(E) \longrightarrow \mathcal{P}(F)$$
 $f^{-1}: \mathcal{P}(F) \longrightarrow \mathcal{P}(E)$
 $A \longmapsto f(A)$ $B \longmapsto f^{-1}(B)$

La première ne doit pas être confondue avec la fonction f de départ, même si par abus elle est notée de la même façon.

Ainsi la donnée de $f:E\to F$ permet de définir deux nouvelles fonctions :

$$f: \mathcal{P}(E) \longrightarrow \mathcal{P}(F)$$
 $f^{-1}: \mathcal{P}(F) \longrightarrow \mathcal{P}(E)$
 $A \longmapsto f(A)$ $B \longmapsto f^{-1}(B)$

La première ne doit pas être confondue avec la fonction f de départ, même si par abus elle est notée de la même façon.

La seconde est définie même si f n'est pas bijective, et dans le cas où f est bijective il ne faut pas la confondre avec la réciproque de f.

Exemple 2

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \sin x$$

$$f([0,\pi]) = f^{-1}([0,1]) =$$

$$f(\mathbb{R}) = f^{-1}(\{2\}) =$$

Exemple 2

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \sin x$$

$$f([0,\pi]) = [0,1]$$
 $f^{-1}([0,1]) =$

$$f(\mathbb{R}) = [-1, 1] \qquad f^{-1}(\{2\}) = \emptyset$$

∟A. Généralités

Exemple 2

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \sin x$$

$$f([0,\pi]) = [0,1]$$
 $f^{-1}([0,1]) = \bigcup_{k \in \mathbb{Z}} [2k\pi, 2k\pi + \pi]$

$$f(\mathbb{R}) = [-1, 1]$$
 $f^{-1}(\{2\}) = \emptyset$

A. Généralités

Remarque

Pour tous $x \in E$ et $y \in F$:

$$y \in f(A) \iff$$

$$x \in f^{-1}(B) \iff$$

A. Généralités

Remarque

Pour tous $x \in E$ et $y \in F$:

$$y \in f(A) \iff$$

$$x \in f^{-1}(B) \iff f(x) \in B$$

Pour tous $x \in E$ et $y \in F$:

$$y \in f(A)$$
 \iff $\exists x \in A \quad f(x) = y$

$$x \in f^{-1}(B) \iff f(x) \in B$$

└A. Généralités

⊳ Exercice 5.

Soit $f: E \to F$

a. Démontrer que :

$$\forall A \subseteq E \qquad A \subseteq f^{-1}(f(A))$$

b. Démontrer que :

$$\forall B \subseteq F \qquad f(f^{-1}(B)) \subseteq B$$

c. Démontrer que ces inclusions sont en général strictes.

$$Utiliser f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x^2$$

Chapitre B2. Ensembles

II. Applications

- A. Généralités
- B. Injections, surjections, bijections
- C. Cas des fonctions réelles

Définition

Une fonction $f: E \to F$ est une injection ou est injective si

$$\forall (x, x') \in E^2 \qquad f(x) = f(x') \implies x = x'$$

Proposition

Une fonction $f:E\to F$ est injective si et seulement si tout élément de F possède au plus un antécédent.

Proposition

Une fonction $f:E\to F$ est injective si et seulement si tout élément de F possède au plus un antécédent.

Graphiquement:

<u>Démonstration</u>.

Sens direct:

f injective \implies Tout élément y de F possède au plus un antécédent par f

Sens indirect:

Tout élément y de F possède au plus un antécédent par $f \implies f$ injective

<u>Démonstration</u>.

Sens direct:

f injective \implies Tout élément y de F possède au plus un antécédent par f

Sens indirect:

Tout élément y de F possède au plus un antécédent par $f \implies f$ injective

Exemple 3

(i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$

Exemple 3

- (i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$
- (ii) Id_E

Exemple 3

- (i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$
- (ii) Id_E
- (iii) $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ $x \longmapsto x^2$ $x \longmapsto x^2$

Exemple 3

- (i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$
- (ii) Id_E
- (iii) $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ $x \longmapsto x^2$
- (iv) $\sin : \mathbb{R} \to \mathbb{R}$

Proposition

 $f:E o F\quad g:F o G$ injectives

 $\Longrightarrow g \circ f$ injective

Proposition

 $f:E o F\quad g:F o G$ injectives

 $\Longrightarrow g \circ f$ injective

i.e.,

La composée de deux injections est une injection.

Proposition

$$f: E \to F$$
 $g: F \to G$ injectives

 $\Longrightarrow g \circ f$ injective

i.e.,

La composée de deux injections est une injection.

Démonstration.

Proposition

$$f:E o F\quad g:F o G$$
 injectives

 $\Longrightarrow g \circ f$ injective

i.e.,

La composée de deux injections est une injection.

Démonstration.

Définition

Une fonction $f:E\to F$ est une surjection ou est surjective si tout élément de F possède (au moins) un antécédent :

$$\forall y \in F \qquad \exists x \in E \qquad f(x) = y$$

Définition

Une fonction $f:E\to F$ est une surjection ou est surjective si tout élément de F possède (au moins) un antécédent :

$$\forall y \in F \qquad \exists x \in E \qquad f(x) = y$$

Graphiquement:

Exemple 3 (suite)

(i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$

- (i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$
- (ii) Id_E

- (i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}^*_+ \to \mathbb{R}$
- (ii) Id_E
- (iii) $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ $x \longmapsto x^2$ $x \longmapsto x^2$

- (i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$
- (ii) Id_E
- (iii) $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ $x \longmapsto x^2$
- (iv) $\sin: \mathbb{R} \to \mathbb{R}$

Remarque

Une application peut être à la fois injective et surjective, ni injective ni surjective, etc.

Proposition

$$f:E\to F\quad g:F\to G \text{ surjectives}$$

 $\Longrightarrow g \circ f$ surjective

Proposition

$$f:E o F\quad g:F o G$$
 surjectives

$$\Longrightarrow g \circ f$$
 surjective

i.e.,

La composée de deux surjections est une surjection.

Proposition

$$f:E o F\quad g:F o G$$
 surjectives

 $\Longrightarrow g \circ f$ surjective

i.e.,

La composée de deux surjections est une surjection.

<u>Démonstration</u>.

Proposition

$$f:E \to F \quad g:F \to G \text{ surjectives}$$

i e

i.e.,

La composée de deux surjections est une surjection.

 $\implies q \circ f$ surjective

Démonstration.

> Exercice 6.

$$f: \mathbb{R} \longrightarrow \mathbb{U}$$
$$x \longmapsto \frac{x+2i}{2+ix}$$

- a. Démontrer que f est bien définie.
- b. Démontrer que f est injective.
- c. Démontrer que f n'est pas surjective.

Définition

Une fonction $f:E\to F$ est une bijection ou est bijective si elle est injective et surjective.

Définition

Une fonction $f:E\to F$ est une bijection ou est bijective si elle est injective et surjective.

i.e.,

f est bijective si tout élément de F possède un et un seul antécédent par f :

$$\forall y \in F \qquad \exists! x \in E \qquad f(x) = y$$

Définition

Une fonction $f:E\to F$ est une bijection ou est bijective si elle est injective et surjective.

i.e.,

f est bijective si tout élément de F possède un et un seul antécédent par f :

$$\forall y \in F \qquad \exists! x \in E \qquad f(x) = y$$

Graphiquement:

Exemple 3 (suite)

(i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$

- (i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}^*_+ \to \mathbb{R}$
- (ii) Id_E

- (i) $\exp: \mathbb{R} \to \mathbb{R}$ et $\ln: \mathbb{R}_+^* \to \mathbb{R}$
- (ii) Id_E
- (iii) $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ $x \longmapsto x^2$ $x \longmapsto x^2$

Proposition

La composée de deux bijections est une bijection.

<u>Démonstration</u>. En effet, la composée de deux injections est une injection et la composée de deux surjections est une surjection.

Définition

Soit $f: E \to F$ une bijection.

Fonction réciproque de f:

$$f^{-1}: F \longrightarrow E$$

 $y \longmapsto \text{antécédent de } y$

Remarques

$$\forall x \in E \quad \forall y \in F$$

$$y = f(x) \iff x = f^{-1}(y)$$

Remarques

$$\forall x \in E \quad \forall y \in F$$

$$y = f(x) \iff x = f^{-1}(y)$$

$$f^{-1} \circ f = \qquad \qquad f \circ f^{-1} =$$

Remarques

$$\forall x \in E \quad \forall y \in F$$

$$y = f(x) \iff x = f^{-1}(y)$$

$$f^{-1} \circ f = \mathrm{Id}_E \qquad \qquad f \circ f^{-1} = \mathrm{Id}_F$$

Exemple 3 (suite)

(i) La réciproque de $\ln \operatorname{est} \exp : \mathbb{R} \to \mathbb{R}_+^*$

- (i) La réciproque de $\ln \operatorname{est} \exp : \mathbb{R} \to \mathbb{R}_+^*$
- (ii) La réciproque de Id_E est Id_E

Exemple 3 (suite)

- (i) La réciproque de $\ln \operatorname{est} \exp : \mathbb{R} \to \mathbb{R}_+^*$
- (ii) La réciproque de Id_E est Id_E
- (iii) La réciproque de $g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ est la $x \longmapsto x^2$

fonction racine carrée $h: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ $x \longmapsto \sqrt{x}$

Théorème

Une fonction $f:E\to F$ est bijective si et seulement si il existe une fonction $g:F\to E$ telle que :

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$

Théorème

Une fonction $f:E\to F$ est bijective si et seulement si il existe une fonction $g:F\to E$ telle que :

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$

Dans ce cas g est la réciproque de f : $g = f^{-1}$

Théorème

Une fonction $f:E\to F$ est bijective si et seulement si il existe une fonction $g:F\to E$ telle que :

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$

Dans ce cas g est la réciproque de f : $g = f^{-1}$

Démonstration.

Théorème

Une fonction $f:E\to F$ est bijective si et seulement si il existe une fonction $g:F\to E$ telle que :

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$

Dans ce cas g est la réciproque de f : $g = f^{-1}$

Démonstration.

Remarques

(i) On a démontré que si f est bijective alors il existe une **unique** application g telle que

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$

Remarques

(i) On a démontré que si f est bijective alors il existe une **unique** application g telle que

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$

(ii) f bijective $\Longrightarrow f^{-1}$ bijective

Remarques

(i) On a démontré que si f est bijective alors il existe une **unique** application g telle que

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$

(ii) f bijective $\Longrightarrow f^{-1}$ bijective de réciproque f (i.e., $(f^{-1})^{-1} = f$)

Méthode

Pour démontrer que f est bijective et calculer f^{-1} :

1. Résoudre l'équation

$$f(x) = y$$

d'inconnue x, avec y fixé.

Si on obtient une et une seule solution pour tout $y \in F$ alors f est bijective et x est l'antécédent de y par f donc $x = f^{-1}(y)$.

Méthode

Pour démontrer que f est bijective et calculer f^{-1} :

2. Si on exhibe une fonction $g:F\to E$ telle que

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$

alors par théorème f est bijective et $g = f^{-1}$.

Méthode

Pour démontrer que f est bijective et calculer f^{-1} :

3. Si E est un intervalle de \mathbb{R} et $F\subseteq \mathbb{R}$ alors on peut appliquer le théorème de la bijection : Si f est continue et strictement monotone alors elle réalise une bijection de E dans f(E), lequel est un intervalle..

On montre que f(E) = F en calculant les limites de f.

Exemple 4

(i)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto 5-3x$

$$x \longmapsto 5 - 3x$$

Exemple 4

(i)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 (ii) $f: \mathbb{R}^* \longrightarrow \mathbb{R}^*$ $x \longmapsto 5-3x$ $x \longmapsto \frac{1}{x}$

Proposition (suite)

Si $f:E\to F$ et $g:F\to G$ sont bijectives alors $g\circ f$ est bijective et :

$$(g \circ f)^{-1} =$$

Proposition (suite)

Si $f:E\to F$ et $g:F\to G$ sont bijectives alors $g\circ f$ est bijective et :

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

<u>Démonstration</u>.

Proposition (suite)

Si $f:E\to F$ et $g:F\to G$ sont bijectives alors $g\circ f$ est bijective et :

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

Démonstration.

Exemple 5

(i) Soit $\alpha \in \mathbb{R}^*$.

La fonction $\mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$ est bijective $x \longmapsto x^{\alpha}$

de réciproque $\mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$ $x \longmapsto x^{\frac{1}{\alpha}}.$

Exemple 5

(ii) Soit $n \in \mathbb{N}$ impair.

La fonction $\mathbb{R}\ \longrightarrow \mathbb{R}\$ est bijective

$$x \longmapsto x^n$$

de réciproque $\mathbb{R} \longrightarrow \mathbb{R}$

$$x \longmapsto x^{\frac{1}{n}} = \sqrt[n]{x}.$$

$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$$
$$x \longmapsto e^{x^2} - 1$$

- a. Déterminer trois bijections simples f_1 , f_2 , f_3 telles que $f = f_3 \circ f_2 \circ f_1$.
- b. En déduire que f est bijective et donner son application réciproque.

Chapitre B2. Ensembles

II. Applications

A. Généralités

B. Injections, surjections, bijections

C. Cas des fonctions réelles

C. Cas des fonctions réelles

Dans cette partie on suppose que E et F sont des parties de \mathbb{R} .

Dans cette partie on suppose que E et F sont des parties de \mathbb{R} .

Remarque

Soit $f: E \to F$ une bijection.

Alors les graphes de f et de f^{-1} sont symétriques l'un de l'autre par rapport à la première bissectrice des axes.

C. Cas des fonctions réelles

Dans cette partie on suppose que E et F sont des parties de \mathbb{R} .

Remarque

Soit $f: E \to F$ une bijection.

Alors les graphes de f et de f^{-1} sont symétriques l'un de l'autre par rapport à la première bissectrice des axes.

Exemple 6

$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$$
$$x \longmapsto x^2$$

C. Cas des fonctions réelles

Remarque

Soit $f: E \to F$ une fonction.

▶ Un réel y admet au moins un antécédent si et seulement si il appartient à f(E).

Soit $f: E \to F$ une fonction.

▶ Un réel y admet au moins un antécédent si et seulement si il appartient à f(E).

$$\hat{f}: E \longrightarrow f(E)$$
 est surjective. $x \longmapsto f(x)$

Soit $f: E \to F$ une fonction.

▶ Un réel y admet au moins un antécédent si et seulement si il appartient à f(E).

$$\hat{f}: E \longrightarrow f(E)$$
 est surjective. $x \longmapsto f(x)$

➤ Si *f* est strictement monotone alors *f* est injective.

Soit $f: E \to F$ une fonction.

▶ Un réel y admet au moins un antécédent si et seulement si il appartient à f(E).

$$\hat{f}: E \longrightarrow f(E)$$
 est surjective. $x \longmapsto f(x)$

➤ Si f est strictement monotone alors f est injective.

Démonstration du second point.

Soit $f: E \to F$ une fonction.

▶ Un réel y admet au moins un antécédent si et seulement si il appartient à f(E).

$$\hat{f}: E \longrightarrow f(E)$$
 est surjective. $x \longmapsto f(x)$

➤ Si f est strictement monotone alors f est injective.

Démonstration du second point.

C. Cas des fonctions réelles

Théorème de la bijection

Soit I un **intervalle** et $f: I \to \mathbb{R}$ une fonction.

Si f est continue et strictement monotone alors

- ightharpoonup f(I) est un intervalle.
- ▶ f réalise une bijection de I dans J = f(I).

C. Cas des fonctions réelles

Théorème de la bijection

Soit I un **intervalle** et $f: I \to \mathbb{R}$ une fonction.

Si f est continue et strictement monotone alors

- ightharpoonup f(I) est un intervalle.
- f réalise une bijection de I dans J = f(I).

De plus, $f^{-1}: J \to I$ est bijective, continue, strictement monotone de même sens que f.

Soit I un **intervalle** et $f: I \to \mathbb{R}$ une fonction.

Si f est continue et strictement monotone alors

- ightharpoonup f(I) est un intervalle.
- f réalise une bijection de I dans J = f(I).

De plus, $f^{-1}: J \to I$ est bijective, continue, strictement monotone de même sens que f.

Exemple

 \ln est une bijection croissante de \mathbb{R}_+^* dans $\mathbb{R}.$

Sa réciproque est la fonction \exp .

Elle est bijective croissante de \mathbb{R} dans \mathbb{R}_+^* .

Soit I un **intervalle** et $f: I \to \mathbb{R}$ une fonction.

Si f est continue et strictement monotone alors

- ightharpoonup f(I) est un intervalle.
- ▶ f réalise une bijection de I dans J = f(I).

Démonstration.

f(I) est un intervalle d'après le TVI :

$$\forall (y, y') \in f(I)^2 \quad \forall d \in \mathbb{R}$$

$$y < d < y' \implies d \in f(I)$$

Soit I un **intervalle** et $f: I \to \mathbb{R}$ une fonction.

Si f est continue et strictement monotone alors

- ightharpoonup f(I) est un intervalle.
- ▶ f réalise une bijection de I dans J = f(I).

Démonstration.

 $f:I\to f(I)$ est bijective d'après la remarque précédente.

Soit I un **intervalle** et $f: I \to \mathbb{R}$ une fonction.

Si f est continue et strictement monotone alors

- ightharpoonup f(I) est un intervalle.
- ▶ f réalise une bijection de I dans J = f(I).

De plus, $f^{-1}: J \to I$ est bijective, continue, strictement monotone de même sens que f.

Démonstration.

La monotonie de $f^{-1}: J \to I$ est immédiate.

Détermination de l'intervalle J:

ightharpoonup Si I=[a,b] et f est croissante alors

$$J =$$

▶ Si I = [a, b] et f est décroissante alors

$$J =$$

$$J =$$

Détermination de l'intervalle J:

ightharpoonup Si I=[a,b] et f est croissante alors

$$J = [f(a), f(b)]$$

▶ Si I = [a, b] et f est décroissante alors

$$J =$$

$$J =$$

Détermination de l'intervalle J:

 $lackbox{Si }I=[a,b]$ et f est croissante alors

$$J = [f(a), f(b)]$$

▶ Si I = [a, b] et f est décroissante alors

$$J = [f(b), f(a)]$$

$$J =$$

Détermination de l'intervalle J:

ightharpoonup Si I=[a,b] et f est croissante alors

$$J = [f(a), f(b)]$$

▶ Si I = [a, b] et f est décroissante alors

$$J = [f(b), f(a)]$$

$$J = [f(a), \lim_b f[$$

Détermination de l'intervalle J:

ightharpoonup Si I=[a,b] et f est croissante alors

$$J = [f(a), f(b)]$$

▶ Si I = [a, b] et f est décroissante alors

$$J = [f(b), f(a)]$$

▶ Si I = [a, b[et f est croissante alors

$$J = [f(a), \lim_b f[$$

etc.

C. Cas des fonctions réelles

Théorème (complément du précédent)

Soit $f: I \to J$ bijective et dérivable.

Alors f^{-1} est dérivable sur

$$J' = \{ y \in J \mid f' \circ f^{-1}(y) \neq 0 \}$$

et

$$\forall y \in J' \qquad (f^{-1})'(y) = \frac{1}{f' \circ f^{-1}(y)}$$

C. Cas des fonctions réelles

Théorème (complément du précédent)

Soit $f: I \to J$ bijective et dérivable.

Alors f^{-1} est dérivable sur J' et

$$\forall y \in J' \qquad (f^{-1})'(y) = \frac{1}{f' \circ f^{-1}(y)}$$

Méthode pour retrouver la formule

Dériver la relation :

$$\forall x \in J \qquad f \circ f^{-1}(x) = x$$

C. Cas des fonctions réelles

Remarque

Si la dérivée s'annule en x_0 alors la fonction réciproque n'est pas dérivable en $y_0=f(x_0)$.

$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$$
$$x \longmapsto x^2$$

Chapitre B2. Ensembles

- I. Ensembles
- II. Applications

III. Relations binaires

- A. Définition
- B. Relation d'équivalence
- C. Relation d'ordre

Chapitre B2. Ensembles

III. Relations binaires

- A. Définition
- B. Relation d'équivalence
- C. Relation d'ordre

☐ III. Relations binaires ☐ A. Définition

Définition

Une relation binaire $\mathcal R$ sur un ensemble E est une partie de $E \times E$.

LA. Définition

Définition

Une relation binaire $\mathcal R$ sur un ensemble E est une partie de $E \times E$.

Au lieu de noter $(x, y) \in \mathcal{R}$ on note $x\mathcal{R}y$.

Définition

Une relation binaire $\mathcal R$ sur un ensemble E est une partie de $E\times E$.

Au lieu de noter $(x, y) \in \mathcal{R}$ on note $x\mathcal{R}y$.

En d'autres termes, deux éléments de E peuvent être reliés ou non.

Définition 2

Une relation binaire ${\mathcal R}$ sur un ensemble E est une application :

$$\mathcal{R}: E \times E \to \{\mathsf{Vrai}, \mathsf{Faux}\}$$

Définition 2

Une relation binaire ${\mathcal R}$ sur un ensemble E est une application :

$$\mathcal{R}: E \times E \to \{\mathsf{Vrai}, \mathsf{Faux}\}$$

On note xRy si R(x,y) est vrai.

LIII. Relations binaires

A. Définition

Exemples

ightharpoonup Relations binaires sur \mathbb{R} : = < > \leq \geq

- ightharpoonup Relations binaires sur \mathbb{R} : = < > \leqslant \geqslant
- ightharpoonup Relations binaires sur $\mathcal{P}(E)$: $= \subset$

└A. Définition

- ightharpoonup Relations binaires sur $\mathbb R$: = < > \leqslant \geqslant
- ▶ Relations binaires sur $\mathcal{P}(E)$: = \subset
- ightharpoonup Relations binaires sur \mathbb{Z} : \equiv modulo 5

Chapitre B2. Ensembles

III. Relations binaires

- A. Définition
- B. Relation d'équivalence
- C. Relation d'ordre

Définition

Une relation d'équivalence sur un ensemble E est une relation $\mathcal R$

- réflexive :
- symétrique :
- ► transitive :

Définition

Une relation d'équivalence sur un ensemble E est une relation $\mathcal R$

- ightharpoonup réflexive: $\forall x \in E \quad x \mathcal{R} x$
- symétrique :
- transitive :

Définition

Une relation d'équivalence sur un ensemble E est une relation $\mathcal R$

- ightharpoonup réflexive : $\forall x \in E \quad x \mathcal{R} x$
- symétrique :

$$\forall (x,y) \in E^2 \quad x\mathcal{R}y \Longrightarrow y\mathcal{R}x$$

transitive :

Définition

Une relation d'équivalence sur un ensemble E est une relation $\mathcal R$

- ightharpoonup réflexive: $\forall x \in E \quad x \mathcal{R} x$
- symétrique :

$$\forall (x,y) \in E^2 \quad x\mathcal{R}y \Longrightarrow y\mathcal{R}x$$

transitive :

$$\forall (x, y, z) \in E^3 \quad x \mathcal{R} y \text{ et } y \mathcal{R} z \implies x \mathcal{R} z$$

Définition

Une relation d'équivalence sur un ensemble E est une relation $\mathcal R$

- ► réflexive : $\forall x \in E \quad x \mathcal{R} x$
- symétrique :

$$\forall (x,y) \in E^2 \quad x\mathcal{R}y \Longrightarrow y\mathcal{R}x$$

► transitive :

$$\forall (x, y, z) \in E^3 \quad x \mathcal{R} y \text{ et } y \mathcal{R} z \implies x \mathcal{R} z$$

Exemple 8

(i) La relation = sur \mathbb{R} est une relation d'équivalence.

Exemple 8

(ii) La relation de congruence modulo 5 est définie sur $\mathbb Z$ par :

$$\forall (m,n) \in \mathbb{Z}^2$$

$$m \equiv n \quad [5] \qquad \Longleftrightarrow \qquad 5 \mid (m-n)$$

C'est une relation d'équivalence.

Exemple 8

(iii) La relation de congruence modulo π est définie sur $\mathbb R$ par :

$$\forall (x,y) \in \mathbb{R}^2$$
 $x \equiv y \quad [\pi] \iff \exists k \in \mathbb{Z} \quad (x-y) = k\pi$

C'est une relation d'équivalence.

Définition

Si \mathcal{R} est une relation d'équivalence sur E, et x est un élément de E, on appelle classe d'équivalence de x l'ensemble de tous les éléments y de E tels que $x\mathcal{R}y$.

$$cl(x) = \{ y \in E \mid x\mathcal{R}y \}$$

Exemples

(i) Relation d'égalité sur les réels : Les classes d'équivalence sont

Exemples

(i) Relation d'égalité sur les réels : Les classes d'équivalence sont les $\{x\}$.

- (i) Relation d'égalité sur les réels : Les classes d'équivalence sont les $\{x\}$.
- (ii) Relation de congruence modulo 5 :

- (i) Relation d'égalité sur les réels : Les classes d'équivalence sont les $\{x\}$.
- (ii) Relation de congruence modulo 5 : 5 classes d'équivalences : $\{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$.

- (i) Relation d'égalité sur les réels : Les classes d'équivalence sont les $\{x\}$.
- (ii) Relation de congruence modulo 5 : 5 classes d'équivalences : $\{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$.
- (iii) Soit E l'ensemble des élèves du lycée. La relation «est dans la même classe que» est une relation d'équivalence.

- (i) Relation d'égalité sur les réels : Les classes d'équivalence sont les $\{x\}$.
- (ii) Relation de congruence modulo 5 : 5 classes d'équivalences : $\{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$.
- (iii) Soit E l'ensemble des élèves du lycée. La relation «est dans la même classe que» est une relation d'équivalence.

Les classes d'équivalence sont :

- (i) Relation d'égalité sur les réels : Les classes d'équivalence sont les $\{x\}$.
- (ii) Relation de congruence modulo 5 : 5 classes d'équivalences : $\{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$.
- (iii) Soit E l'ensemble des élèves du lycée.
 La relation «est dans la même classe que» est une relation d'équivalence.
 Les classes d'équivalence sont : les classes.

(iv) Soit E l'ensemble des stylos et crayons d'une trousse.

La relation «écrit de la même couleur que» est une relation d'équivalence.

(iv) Soit E l'ensemble des stylos et crayons d'une trousse.

La relation «écrit de la même couleur que» est une relation d'équivalence.

Les classes d'équivalence sont :

(iv) Soit E l'ensemble des stylos et crayons d'une trousse.

La relation «écrit de la même couleur que» est une relation d'équivalence.

Les classes d'équivalence sont : les couleurs.

- (iv) Soit E l'ensemble des stylos et crayons d'une trousse.
 - La relation «écrit de la même couleur que» est une relation d'équivalence.
 - Les classes d'équivalence sont : les couleurs.
- (v) Soit \mathcal{E} la classe de tous les ensembles finis. La relation «avoir le même nombre d'éléments que» est une relation d'équivalence.

- (iv) Soit E l'ensemble des stylos et crayons d'une trousse.
 - La relation «écrit de la même couleur que» est une relation d'équivalence.
 - Les classes d'équivalence sont : les couleurs.
- (v) Soit \mathcal{E} la classe de tous les ensembles finis. La relation «avoir le même nombre d'éléments que» est une relation d'équivalence.
 - Les classes d'équivalence sont :

- (iv) Soit E l'ensemble des stylos et crayons d'une trousse.
 - La relation «écrit de la même couleur que» est une relation d'équivalence.
 - Les classes d'équivalence sont : les couleurs.
- (v) Soit & la classe de tous les ensembles finis.
 La relation «avoir le même nombre d'éléments que» est une relation d'équivalence.
 Les classes d'équivalence sont : les entiers
 - Les classes d'equivalence sont : les entiers naturels.

Chapitre B2. Ensembles

└III. Relations binaires

☐B. Relation d'équivalence

Proposition

L'ensemble des classes d'équivalence de E forme une partition de E.

☐B. Relation d'équivalence

Proposition

L'ensemble des classes d'équivalence de E forme une partition de E.

Définition

E un ensemble, $(A_i)_{i \in I}$ famille de parties de ECette famille est une partition de E si :

- (i) Les A_i sont disjoints :
 - $\forall (i,j) \in I^2 \qquad i \neq j \implies A_i \cap A_j = \varnothing$
- (ii) Les A_i couvrent E tout entier : $\bigcup_{i \in I} A_i = E$

☐B. Relation d'équivalence

Remarque

Dans ce cas tout élément a de A appartient à un unique A_i :

$$\forall a \in E \qquad \exists! i \in I \quad a \in A_i$$

Exemples

- (i) Relation d'égalité sur les réels : Les classes d'équivalence sont les $\{x\}$.
- (ii) Relation de congruence modulo 5 : 5 classes d'équivalences : $\{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$.
- (iii) Relation «est dans la même classe que» sur les élèves du lycéeesLes classes d'équivalence sont : les classes.

Exemples

- (i) Relation «écrit de la même couleur que» sur l'ensemble des stylos et crayons d'une trousse. Classes d'équivalence : les couleurs.
- (ii) Relation «avoir le même nombre d'éléments que» sur les ensembles finis.

Classes d'équivalence : les entiers naturels.

⊳ Exercice 8.

Sur l'ensemble \mathbb{C}^* on définit la relation \mid par :

$$z|z' \iff \frac{z'}{z} \in \mathbb{R}_+^*.$$

- a. Justifier que | est une relation d'équivalence.
- b. Quelles sont les classes d'équivalences?

Chapitre B2. Ensembles

III. Relations binaires

- A. Définition
- B. Relation d'équivalence
- C. Relation d'ordre

Définition

Une relation d'ordre sur un ensemble E est une relation \mathcal{R}

- réflexive :
- ► antisymétrique :
- ► transitive :

Définition

Une relation d'ordre sur un ensemble E est une relation $\mathcal R$

- ightharpoonup réflexive : $\forall x \in E \quad x \mathcal{R} x$
- ► antisymétrique :
- ► transitive :

Définition

Une relation d'ordre sur un ensemble E est une relation \mathcal{R}

- ightharpoonup réflexive : $\forall x \in E \quad x \mathcal{R} x$
- ► antisymétrique :

$$\forall (x,y) \in E^2 \quad x\mathcal{R}y \text{ et } y\mathcal{R}x \Longrightarrow \ x = y$$

► transitive :

Définition

Une relation d'ordre sur un ensemble E est une relation \mathcal{R}

- ightharpoonup réflexive : $\forall x \in E \quad x \mathcal{R} x$
- ► antisymétrique : $\forall (x,y) \in E^2 \quad x \mathcal{R} y \text{ et } y \mathcal{R} x \Longrightarrow x = y$
- ► transitive :

$$\forall (x, y, z) \in E^3 \quad x \mathcal{R} y \text{ et } y \mathcal{R} z \implies x \mathcal{R} z$$

Exemple 9

(i) La relation \leq est une relation d'ordre sur \mathbb{R} .

Exemple 9

- (i) La relation \leq est une relation d'ordre sur \mathbb{R} .
- (ii) Soit E un ensemble. La relation d'inclusion \subseteq est une relation d'ordre sur $\mathcal{P}(E)$.

Exemple 9

- (i) La relation \leq est une relation d'ordre sur \mathbb{R} .
- (ii) Soit E un ensemble. La relation d'inclusion \subseteq est une relation d'ordre sur $\mathcal{P}(E)$.
- (iii) La relation de divisibilité | sur $\mathbb N$:

$$\forall (a,b) \in \mathbb{N}^2$$

$$a \mid b \iff \exists k \in \mathbb{N} \quad b = ka$$

est une relation d'ordre.

Définitions

Une relation d'ordre est dite totale si deux éléments peuvent toujours être comparés :

$$\forall (x,y) \in E^2 \qquad x\mathcal{R}y \quad \text{ou} \quad y\mathcal{R}x$$

Sinon elle est dite partielle.

III. Relations binaires

C. Relation d'ordre

Exemple 9 (suite)

(i) La relation \leq sur \mathbb{R} est

Exemple 9 (suite)

(i) La relation \leq sur \mathbb{R} est totale.

- (i) La relation \leq sur \mathbb{R} est totale.
- (ii) La relation d'inclusion \subseteq sur $\mathcal{P}(E)$ est

- (i) La relation \leq sur \mathbb{R} est totale.
- (ii) La relation d'inclusion \subseteq sur $\mathcal{P}(E)$ est partielle.

- (i) La relation \leq sur \mathbb{R} est totale.
- (ii) La relation d'inclusion \subseteq sur $\mathcal{P}(E)$ est partielle.
- (iii) La relation de divisibilité | sur $\mathbb N$ est

- (i) La relation \leq sur \mathbb{R} est totale.
- (ii) La relation d'inclusion \subseteq sur $\mathcal{P}(E)$ est partielle.
- (iii) La relation de divisibilité | sur $\mathbb N$ est partielle.

Définitions

Soit \preccurlyeq une relation d'ordre sur un ensemble E. Soit A une partie de E et m un élément de E.

(i) m est un majorant de A pour la relation \leq si :

$$\forall a \in A \quad a \preccurlyeq m$$

Définitions

Soit \preccurlyeq une relation d'ordre sur un ensemble E. Soit A une partie de E et m un élément de E.

(i) m est un majorant de A pour la relation \preccurlyeq si :

$$\forall a \in A \quad a \preccurlyeq m$$

Si de plus m appartient à A alors m est le maximum de A pour la relation \leq .

Définitions

Soit \preccurlyeq une relation d'ordre sur un ensemble E. Soit A une partie de E et m un élément de E.

(i) m est un majorant de A pour la relation \leq si :

$$\forall a \in A \quad a \preccurlyeq m$$

Si de plus m appartient à A alors m est le maximum de A pour la relation \preceq .

On dit aussi que m est le plus grand élément de A pour la relation \leq .

Définitions

Soit \preccurlyeq une relation d'ordre sur un ensemble E. Soit A une partie de E et m un élément de E. (ii) m est un minorant de A pour la relation \preccurlyeq si :

$$\forall a \in A \quad m \preccurlyeq a$$

Si de plus m appartient à A alors m est le minimum de A pour la relation \leq .

On dit aussi que m est le plus petit élément de A pour la relation \leq .

Remarques

- (i) Si une partie est majorée alors elle n'admet pas forcément de maximum.
- (ii) Si une partie admet un maximum alors il est unique, par antisymétrie.

Exemples

Soit E un ensemble.

(i) $\mathcal{P}(E)$ possède un minimum et un maximum pour la relation \subseteq . Le minimum est

Exemples

Soit E un ensemble.

(i) $\mathcal{P}(E)$ possède un minimum et un maximum pour la relation \subseteq .

Le minimum est l'ensemble vide.

Le maximum est

Exemples

Soit E un ensemble.

(i) $\mathcal{P}(E)$ possède un minimum et un maximum pour la relation \subseteq .

Le minimum est l'ensemble vide.

Le maximum est E.

Exemples

Soit E un ensemble.

- (i) P(E) possède un minimum et un maximum pour la relation ⊆.
 Le minimum est l'ensemble vide.
 Le maximum est E.
- (ii) Soit A et B deux parties de E. Alors le couple $\{A,B\}$ est une partie de $\mathcal{P}(E)$. Quels sont les majorants de cette partie?

Exemples

Soit E un ensemble.

- (i) P(E) possède un minimum et un maximum pour la relation ⊆.
 Le minimum est l'ensemble vide.
 Le maximum est E.
- (ii) Soit A et B deux parties de E. Alors le couple $\{A,B\}$ est une partie de $\mathcal{P}(E)$. Quels sont les majorants de cette partie? Les parties X telles que $A \cup B \subseteq X$. Quels sont ses minorants?

Exemples

Soit E un ensemble.

- (i) $\mathcal{P}(E)$ possède un minimum et un maximum pour la relation \subseteq . Le minimum est l'ensemble vide.
 - Le maximum est E.
- (ii) Soit A et B deux parties de E.

Alors le couple $\{A, B\}$ est une partie de $\mathcal{P}(E)$. Quels sont les majorants de cette partie?

Queis sont les majorants de cette parti

Les parties X telles que $A \cup B \subseteq X$.

Quels sont ses minorants?

Les parties X telles que $X \subseteq A \cap B$.

Chapitre B2. Ensembles

—III. Relations binaires

C. Relation d'ordre

Exemple

L'ensemble $\mathbb N$ admet un minimum et un maximum pour la relation de divisibilité.

Le minimum est

Chapitre B2. Ensembles

III. Relations binaires

C. Relation d'ordre

Exemple

L'ensemble $\mathbb N$ admet un minimum et un maximum pour la relation de divisibilité.

Le minimum est 1.

Le maximum est

Exemple

L'ensemble $\ensuremath{\mathbb{N}}$ admet un minimum et un maximum pour la relation de divisibilité.

Le minimum est 1.

Le maximum est 0.

Exemple

L'ensemble $\mathbb N$ admet un minimum et un maximum pour la relation de divisibilité.

Le minimum est 1.

Le maximum est 0.

⊳ Exercice 9.

On munit \mathbb{N} de la relation de divisibilité.

Quels sont les majorants de la partie $\{18, 30\}$?

Quels sont ses minorants?

Prochain chapitre

Chapitre A4 Fonctions usuelles