Mathématiques

Chapitre B1 Nombres complexes

MPSI - Lycée Bellevue - Toulouse

Année 2024-2025

Raphaël Bombelli (Italie) 1526 – 1572

Niccolo Fontana dit Tartaglia (Italie) 1499 – 1557

Girolamo Cardano (Italie) 1501 – 1576

Leonhard Euler (Suisse) 1707 – 1783

Carl Friedrich Gauss (Allemagne) 1777 – 1855

Louis-Augustin Cauchy (France) 1789 – 1857

I. Généralités

I. Généralités

II. Angles

I. Généralités

II. Angles

III. Équations algébriques

I. Généralités

II. Angles

III. Équations algébriques

IV. L'exponentielle complexe

I. Généralités

- A. Nombres complexes
- B. Conjugaison
- C. Module

II. Angles

- III. Équations algébriques
- IV. L'exponentielle complexe

I. Généralités

- A. Nombres complexes
- B. Conjugaison
- C. Module

Soit i un nombre vérifiant $i^2=-1$. On note $\mathbb C$ l'ensemble des nombres x+iy où x et y sont deux réels :

$$\mathbb{C} = \left\{ x + iy \mid (x, y) \in \mathbb{R}^2 \right\}$$

Ces nombres sont appelés nombres complexes.

Soit i un nombre vérifiant $i^2=-1$. On note $\mathbb C$ l'ensemble des nombres x+iy où x et y sont deux réels :

$$\mathbb{C} = \left\{ x + iy \mid (x, y) \in \mathbb{R}^2 \right\}$$

Ces nombres sont appelés nombres complexes.

Exemple

$$2+3i$$
 5 $-\frac{3}{2}i$ $\sqrt{2}+i\pi...$

- (i) L'ensemble \mathbb{C} est muni d'une addition et d'une multiplication.
- (ii) Tout complexe z possède un opposé -z.
- (iii) Tout complexe z non-nul possède un inverse $\frac{1}{z}$.
- (iv) On définit ainsi également la soustraction et la division par un complexe non-nul.

- (i) L'ensemble $\mathbb C$ est muni d'une addition et d'une multiplication.
- (ii) Tout complexe z possède un opposé -z.
- (iii) Tout complexe z non-nul possède un inverse $\frac{1}{z}$.
- (iv) On définit ainsi également la soustraction et la division par un complexe non-nul.

Exemple

Calcul de
$$\frac{2+i}{3-i}$$

- (i) L'ensemble $\mathbb C$ est muni d'une addition et d'une multiplication.
- (ii) Tout complexe z possède un opposé -z.
- (iii) Tout complexe z non-nul possède un inverse $\frac{1}{z}$.
- (iv) On définit ainsi également la soustraction et la division par un complexe non-nul.

Démonstration du (iii). Soit $z = x + iy \neq 0$.

$$\frac{1}{z} = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2}.$$

Soit $z = x + iy \in \mathbb{C}$ avec $(x, y) \in \mathbb{R}^2$.

Alors x est la partie réelle et y est la partie imaginaire de z.

On note x = Re(z) et y = Im(z).

☐I. Généralités

A. Nombres complexes

Exemple

$$Re(3+2i) = Im(3+2i) =$$

$$Re(i) = Im(i) =$$

$$\operatorname{Re}(i) = \operatorname{Im}(i) =$$

☐I. Généralités

A. Nombres complexes

Exemple

$$Re(3+2i) = 3$$
 $Im(3+2i) = 2$

$$\operatorname{Re}(i) = \operatorname{Im}(i) =$$

Exemple

$$Re(3+2i) = \frac{3}{3}$$
 $Im(3+2i) = \frac{2}{3}$

$$Re(i) = 0 Im(i) = 1$$

Attention

Im(z) est réel.

$$\operatorname{Im}(z) = 0$$
: z est réel.
 $\operatorname{Re}(z) = 0$: z est imaginaire pur.

$$\mathbb{R} = \{ x \mid x \in \mathbb{R} \} \subseteq \mathbb{C}$$

$$i\mathbb{R} = \{iy \mid y \in \mathbb{R}\} \subseteq \mathbb{C}$$

A. Nombres complexes

Définition

Le plan est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) .

$$z = x + iy \longleftrightarrow M(x, y)$$

Le plan est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) .

$$z = x + iy \longleftrightarrow M(x, y)$$

affixe de M image de z

Le plan est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) .

$$z = x + iy \longleftrightarrow M(x,y)$$
 affixe de M image de z

Les deux axes du repère sont l'axe des réels et l'axe des imaginaires purs.

Si z et z' sont deux complexes, d'images M et M', alors z+z' admet pour image le point M'' tel que

$$\overrightarrow{OM} + \overrightarrow{OM'} = \overrightarrow{OM''}$$

Si z et z' sont deux complexes, d'images M et M', alors z+z' admet pour image le point M'' tel que

$$\overrightarrow{OM} + \overrightarrow{OM'} = \overrightarrow{OM''}$$

Le vecteur $\overrightarrow{MM'}$ admet pour affixe z'-z.

I. Généralités

- A. Nombres complexes
- B. Conjugaison
- C. Module

└I. Généralités

☐B. Conjugaison

Définition

Soit z=x+iy un complexe. Le conjugué de z est :

$$\bar{z} = x - iy$$

∟B. Conjugaison

Définition

Soit z = x + iy un complexe. Le conjugué de z est :

$$\bar{z} = x - iy$$

Remarque

Les images de z et de \bar{z} sont symétriques par rapport à l'axe des réels.

Soit z = x + iy un complexe. Le conjugué de z est :

$$\bar{z} = x - iy$$

Remarque

Les images de z et de \bar{z} sont symétriques par rapport à l'axe des réels.

Exemple

$$\overline{4+3i} = \overline{1-6i} = \overline{7}$$

$$\overline{5} = \overline{7i} =$$

Soit z = x + iy un complexe. Le conjugué de z est :

$$\bar{z} = x - iy$$

Remarque

Les images de z et de \bar{z} sont symétriques par rapport à l'axe des réels.

Exemple

$$\overline{4+3i} = 4-3i \qquad \overline{1-6i} = 1+6i$$

$$\overline{5} = 5 \qquad \overline{7i} = -7i$$

└B. Conjugaison

Propositions

(i)
$$\forall z \in \mathbb{C} : \overline{\overline{z}} = z$$
 (La conjugaison est une involution.)

Propositions

(i)
$$\forall z \in \mathbb{C} : \overline{z} = z$$
 (La conjugaison est une involution.)

(ii)
$$\forall (z, z') \in \mathbb{C}^2$$
:

$$\overline{z+z'} = \overline{zz'} =$$

$$\overline{\left(\frac{z}{z'}\right)} =$$
(avec $z' \neq 0$)

 $\overline{z-z'}=$

Propositions

(i)
$$\forall z \in \mathbb{C} : \overline{\overline{z}} = z$$
 (La conjugaison est une involution.)

(ii)
$$\forall (z,z') \in \mathbb{C}^2$$
:

$$\overline{z+z'} = \overline{z} + \overline{z'}$$
 $\overline{z-z'} = \overline{z} - \overline{z'}$

$$\overline{zz'} = \overline{z}\overline{z'}$$
 $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$ (avec $z' \neq 0$)

(i)
$$\forall z \in \mathbb{C}$$
: $\overline{z} = z$ (La conjugaison est une involution.)

(ii)
$$\forall (z,z') \in \mathbb{C}^2$$
:

$$\overline{z+z'} = \overline{z} + \overline{z'} \qquad \overline{z-z'} = \overline{z} - \overline{z'}$$

$$\overline{zz'} = \overline{z}\overline{z'} \qquad \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$$

$$(\text{avec } z' \neq 0)$$

$$\forall z \in \mathbb{C} \quad \forall n \in \mathbb{N} :$$

$$\overline{nz} = n\overline{z} \qquad \overline{z^n} = \overline{z}^n$$

Chapitre B1. Nombres complexes

I. Généralités

☐B. Conjugaison

Démonstration. Il suffit de tout écrire.

_I. Généralités	
B. Conjugaison	
Démonstration. Il suffit de tout écrire.	
<u>Demonstration</u> . It sumt de tout echne.	

Chapitre B1. Nombres complexes

B. Conjugaison

Proposition

(i)
$$\operatorname{Re} z = \operatorname{et} \operatorname{Im} z =$$

(i)
$$\operatorname{Re} z = \frac{z + \overline{z}}{2}$$
 et $\operatorname{Im} z =$

(i) Re
$$z = \frac{z + \overline{z}}{2}$$
 et Im $z = \frac{z - \overline{z}}{2i}$

(i)
$$\operatorname{Re} z = \frac{z + \overline{z}}{2}$$
 et $\operatorname{Im} z = \frac{z - \overline{z}}{2i}$

$$(ii) \quad z \in \mathbb{R} \qquad \Longleftrightarrow \qquad z \in i\mathbb{R} \qquad \Longleftrightarrow \qquad$$

$$z \in i\mathbb{R} \qquad \Longleftrightarrow$$

(i)
$$\operatorname{Re} z = \frac{z + \overline{z}}{2}$$
 et $\operatorname{Im} z = \frac{z - \overline{z}}{2i}$

$$\begin{array}{ccc} \text{(ii)} & z \in \mathbb{R} & \iff & \overline{z} = z \\ & z \in i\mathbb{R} & \iff & \end{array}$$

(i)
$$\operatorname{Re} z = \frac{z + \overline{z}}{2}$$
 et $\operatorname{Im} z = \frac{z - \overline{z}}{2i}$

Pour tout complexe z:

(i) Re
$$z = \frac{z + \overline{z}}{2}$$
 et Im $z = \frac{z - \overline{z}}{2i}$

(ii)
$$z \in \mathbb{R} \iff \overline{z} = z$$

 $z \in i\mathbb{R} \iff \overline{z} = -z$

Démonstration.

Soit z = x + iy avec $(x, y) \in \mathbb{R}^2$.

Pour tout complexe z:

(i) Re
$$z = \frac{z + \overline{z}}{2}$$
 et Im $z = \frac{z - \overline{z}}{2i}$

(ii)
$$z \in \mathbb{R} \iff \overline{z} = z$$

 $z \in i\mathbb{R} \iff \overline{z} = -z$

Démonstration.

Soit z = x + iy avec $(x, y) \in \mathbb{R}^2$.

Calculer

a.
$$a+b$$
 ab $\frac{a}{b}$ $\frac{b}{a}$ avec $a=4-i$ et $b=3+2i$

b.
$$i^2$$
 i^3 i^4 i^{27} i^{270576}
c. $(-i)^2$ $(-i)^3$ $(-i)^4$

d.
$$(1+i)^2 (1+i)^3 (1+i)^4 (1+i)^8 (1+i)^{27}$$

Chapitre B1. Nombres complexes

I. Généralités

- A. Nombres complexes
- B. Conjugaison
- C. Module

C. Module

Définition

Soit $z \in \mathbb{C}$. Le module de z est :

$$|z| = \sqrt{z\overline{z}}$$

☐I. Généralités

C. Module

Définition

Soit $z \in \mathbb{C}$. Le module de z est :

$$|z| = \sqrt{z\overline{z}}$$

Si z = x + iy alors :

$$|z| = \sqrt{x^2 + y^2}$$

Définition

Soit $z \in \mathbb{C}$. Le module de z est :

$$|z| = \sqrt{z\overline{z}}$$

Si z = x + iy alors :

$$|z| = \sqrt{x^2 + y^2}$$

Remarques

(i) Le module est bien défini, c'est un réel positif.

└C. Module

Définition

Soit $z \in \mathbb{C}$. Le module de z est :

$$|z| = \sqrt{z\overline{z}}$$

Si z = x + iy alors :

$$|z| = \sqrt{x^2 + y^2}$$

Remarques

- (i) Le module est bien défini, c'est un réel positif.
- (ii) Si z est réel alors son module coïncide avec sa valeur absolue.

Définition

Soit $z \in \mathbb{C}$. Le module de z est :

$$|z| = \sqrt{z\overline{z}}$$

Si z = x + iy alors :

$$|z| = \sqrt{x^2 + y^2}$$

Remarques

- (i) Le module est bien défini, c'est un réel positif.
- (ii) Si z est réel alors son module coïncide avec sa valeur absolue.
- (iii) Il représente la distance du point image M_z à l'origine.

Rappel

Soit A et B deux points du plan d'affixes respectives a et b. Alors

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$$

donc \overrightarrow{AB} a pour affixe b-a.

Rappel

Soit A et B deux points du plan d'affixes respectives a et b. Alors

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$$

donc \overrightarrow{AB} a pour affixe b-a.

Proposition

La distance de A à B est |b-a|.

Définition

Soit A un point d'affixe $a \in \mathbb{C}$ et $r \in \mathbb{R}_+$.

ightharpoonup Le cercle de centre A et de rayon r :

$$\mathcal{C} = \{ z \in \mathbb{C} \mid |z - a| = r \}$$

Définition

Soit A un point d'affixe $a \in \mathbb{C}$ et $r \in \mathbb{R}_+$.

ightharpoonup Le cercle de centre A et de rayon r :

$$\mathcal{C} = \{ z \in \mathbb{C} \mid |z - a| = r \}$$

ightharpoonup Le disque ouvert de centre A et de rayon r :

$$\mathcal{D} = \{ z \in \mathbb{C} \mid |z - a| < r \}$$

ightharpoonup Le disque fermé de centre A et de rayon r:

$$\overline{\mathcal{D}} = \{ z \in \mathbb{C} \mid |z - a| \leqslant r \}$$

Remarque

 $\overline{\mathcal{D}}$ est l'union disjointe de \mathcal{D} et \mathcal{C} :

$$\overline{\mathcal{D}} = \mathcal{C} \cup \mathcal{D}$$
 et $\mathcal{C} \cap \mathcal{D} = \emptyset$

Soit $(z,z')\in\mathbb{C}^2$ et $n\in\mathbb{N}.$ Alors :

$$\begin{vmatrix} zz' | = & \left| \frac{z}{z'} \right| = & |z^n| = \\ (z' \neq 0) & \end{aligned}$$

Soit $(z, z') \in \mathbb{C}^2$ et $n \in \mathbb{N}$. Alors :

$$|zz'| = |z||z'| \qquad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \qquad |z^n| = |z|^n$$
$$(z' \neq 0)$$

Soit $(z, z') \in \mathbb{C}^2$ et $n \in \mathbb{N}$. Alors :

$$|zz'| = |z||z'| \qquad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \qquad |z^n| = |z|^n$$
$$(z' \neq 0)$$

<u>Démonstration</u>. (Exercice) Il suffit de tout écrire.

Soit $(z, z') \in \mathbb{C}^2$ et $n \in \mathbb{N}$. Alors :

$$|zz'| = |z||z'| \qquad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \qquad |z^n| = |z|^n$$
$$(z' \neq 0)$$

<u>Démonstration</u>. (Exercice) Il suffit de tout écrire.

C. Module

Proposition - Inégalité triangulaire

$$\forall (z, z') \in \mathbb{C}^2$$

$$||z| - |z'|| \le |z + z'| \le |z| + |z'|$$

Proposition - Inégalité triangulaire

$$\forall (z, z') \in \mathbb{C}^2$$

$$||z| - |z'|| \le |z + z'| \le |z| + |z'|$$

Remarque - Autre inégalité triangulaire

En remplaçant z' par -z':

$$||z| - |z'|| \le |z - z'| \le |z| + |z'|$$

☐I. Généralités

C. Module

Lemme

$$\forall z \in \mathbb{C}$$
:

(i)
$$|\overline{z}| = |z|$$
 et

(ii)
$$-|z| \leqslant \operatorname{Re} z \leqslant |z|$$

$$-|z| \leqslant \operatorname{Im} z \leqslant |z|$$

└ I. Généralités

└C. Module

Lemme

$$\forall z \in \mathbb{C}$$
:

(i)
$$|\overline{z}| = |z|$$
 et (ii) $-|z| \leqslant \operatorname{Re} z \leqslant |z|$ $-|z| \leqslant \operatorname{Im} z \leqslant |z|$

Démonstration.

(i)
$$|\bar{z}| = \sqrt{\bar{z}\bar{z}} = \sqrt{\bar{z}z} = |z|$$

☐I. Généralités

└C. Module

Lemme

$$\forall z \in \mathbb{C}$$
:

(i)
$$|\overline{z}| = |z|$$
 et (ii) $-|z| \leqslant \operatorname{Re} z \leqslant |z|$

$$-|z| \leqslant \operatorname{Im} z \leqslant |z|$$

<u>Démonstration</u>.

(ii)
$$-|z| \le \operatorname{Re} z \le |z|$$

$$\iff (\operatorname{Re} z)^2 \le |z|^2$$

└C. Module

Lemme

$$\forall z \in \mathbb{C} :$$

(i)
$$|\overline{z}| = |z|$$
 et (ii) $-|z| \leqslant \operatorname{Re} z \leqslant |z|$ $-|z| \leqslant \operatorname{Im} z \leqslant |z|$

Démonstration.

(ii)
$$-|z| \leqslant \operatorname{Re} z \leqslant |z|$$

$$\iff (\operatorname{Re} z)^{2} \leqslant |z|^{2}$$

$$\iff x^{2} \leqslant x^{2} + y^{2}$$

$$\iff 0 \leqslant y^{2} \qquad \Box$$

Proposition - Inégalité triangulaire

$$\forall (z, z') \in \mathbb{C}^2$$

 $||z| - |z'|| \le |z + z'| \le |z| + |z'|$

Démonstration de l'inégalité triangulaire.

Proposition - Inégalité triangulaire

$$\forall (z, z') \in \mathbb{C}^2$$
$$||z| - |z'|| \leqslant |z + z'| \leqslant |z| + |z'|$$

Démonstration de l'inégalité triangulaire.

Proposition - Inégalité triangulaire généralisée

$$n \in \mathbb{N}$$
 $(z_1, \dots, z_n) \in \mathbb{C}^n$

$$\left| \sum_{k=1}^{n} z_k \right| \leqslant \sum_{k=1}^{n} |z_k|$$

└C. Module

Proposition - Inégalité triangulaire généralisée

$$n \in \mathbb{N}$$
 $(z_1, \dots, z_n) \in \mathbb{C}^n$
$$\left| \sum_{k=1}^n z_k \right| \leqslant \sum_{k=1}^n |z_k|$$

Démonstration. Par récurrence sur n.

Chapitre B1. Nombres complexes

I. Généralités

II. Angles

- A. L'ensemble U
- B. Argument
- C. Aspect dynamique
- D. Applications à la trigonométrie
- E. Applications à la géométrie
- III. Équations algébriques
- IV. L'exponentielle complexe

Chapitre B1. Nombres complexes

II. Angles

- A. L'ensemble U
- B. Argument
- C. Aspect dynamique
- D. Applications à la trigonométrie
- E. Applications à la géométrie

LA. L'ensemble U

Notation

 $\ensuremath{\mathbb{U}}$: ensemble des nombres complexes de module 1 :

$$\mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}$$
$$= \{ x + iy \in \mathbb{C} \mid x^2 + y^2 = 1 \}$$

Chapitre B1. Nombres complexes

└II. Angles

A. L'ensemble U

Remarque

L'ensemble des images des éléments de $\ensuremath{\mathbb{U}}$ est le cercle trigonométrique.

Remarque

L'ensemble des images des éléments de $\ensuremath{\mathbb{U}}$ est le cercle trigonométrique.

Soit z un élément de \mathbb{U} , M son image, et θ une mesure de l'angle orienté $\left(\overrightarrow{u},\overrightarrow{OM}\right)$. Alors :

$$z = \cos\theta + i\sin\theta$$

Remarque

L'ensemble des images des éléments de $\ensuremath{\mathbb{U}}$ est le cercle trigonométrique.

Soit z un élément de \mathbb{U} , M son image, et θ une mesure de l'angle orienté $\left(\overrightarrow{u},\overrightarrow{OM}\right)$. Alors :

$$z = \cos\theta + i\sin\theta$$

Proposition

Soit x et y deux réels tels que $x^2 + y^2 = 1$.

Alors il existe
$$\theta \in \mathbb{R}$$
 tel que :
$$\begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases}$$

A. L'ensemble U

Définition

Pour tout $\theta \in \mathbb{R}$ on pose

$$e^{i\theta} =$$

Définition

Pour tout $\theta \in \mathbb{R}$ on pose

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Définition

Pour tout $\theta \in \mathbb{R}$ on pose

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Ainsi \mathbb{U} est l'ensemble des $e^{i\theta}$ où $\theta \in \mathbb{R}$:

$$\mathbb{U} = \left\{ e^{i\theta} \mid \theta \in \mathbb{R} \right\}$$

Chapitre B1. Nombres complexes

└II. Angles

A. L'ensemble U

Proposition

Pour tous réels θ et θ' : $e^{i(\theta+\theta')}=e^{i\theta}e^{i\theta'}$

Pour tous réels θ et θ' : $e^{i(\theta+\theta')}=e^{i\theta}e^{i\theta'}$

$$e^{i\theta}e^{i\theta'} = (\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')$$

$$= \cos\theta\cos\theta' + i\cos\theta\sin\theta'$$

$$+i\sin\theta\cos\theta' - \sin\theta\sin\theta'$$

$$= \cos(\theta + \theta') + i\sin(\theta + \theta')$$

Pour tous réels θ et θ' : $e^{i(\theta+\theta')}=e^{i\theta}e^{i\theta'}$

$$e^{i\theta}e^{i\theta'} = (\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')$$

$$= \cos\theta\cos\theta' + i\cos\theta\sin\theta'$$

$$+i\sin\theta\cos\theta' - \sin\theta\sin\theta'$$

$$= \cos(\theta + \theta') + i\sin(\theta + \theta')$$

Pour tous réels θ et θ' : $e^{i(\theta+\theta')}=e^{i\theta}e^{i\theta'}$

$$e^{i\theta}e^{i\theta'} = (\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')$$

$$= \cos\theta\cos\theta' + i\cos\theta\sin\theta'$$

$$+i\sin\theta\cos\theta' - \sin\theta\sin\theta'$$

$$= \cos(\theta + \theta') + i\sin(\theta + \theta')$$

Pour tous réels θ et θ' : $e^{i(\theta+\theta')}=e^{i\theta}e^{i\theta'}$

$$\overline{e^{i\theta}}e^{i\theta'} = (\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')
= \cos\theta\cos\theta' + i\cos\theta\sin\theta'
+ i\sin\theta\cos\theta' - \sin\theta\sin\theta'
= \cos(\theta + \theta') + i\sin(\theta + \theta')
= e^{i(\theta + \theta')}$$

Chapitre B1. Nombres complexes

II. Angles

- A. L'ensemble U
- B. Argument
- C. Aspect dynamique
- D. Applications à la trigonométrie
- E. Applications à la géométrie

∟B. Argument

Remarque

Soit z non-nul. Soit r son module.

Remarque

Soit z non-nul. Soit r son module.

Alors
$$\frac{z}{r}$$
 est bien défini et $\left|\frac{z}{r}\right| = \frac{|z|}{r} = 1$

Donc $\frac{z}{r} \in \mathbb{U}$:

$$\exists \theta \in \mathbb{R} \qquad \frac{z}{r} = e^{i\theta}$$

Il existe donc $\theta \in \mathbb{R}$ tel que : $z = re^{i\theta}$

Définition

Soit z non-nul et r son module.

Un argument de z est un réel θ tel que :

$$z = re^{i\theta}$$

On note alors $\theta = \arg z$.

Remarques

L'argument est défini à 2π près.

On peut avoir par exemple en même temps :

$$\arg z = \frac{\pi}{6}$$
 et $\arg z = \frac{13\pi}{6}$

On dit alors que $\frac{\pi}{6}$ est un argument de z.

Le module d'un complexe est unique, alors que son argument est défini à 2π près :

$$re^{i\theta} = r'e^{i\theta'} \iff \begin{cases} r = r' \\ \exists k \in \mathbb{Z} & \theta = \theta' + 2k\pi \end{cases}$$

└II. Angles

□B. Argument

Définition

Forme algébrique : z = x + iy

Forme exponentielle : $z = re^{i\theta}$

Proposition (Passage d'une forme à l'autre)

Avec les notations de la définition précédente :

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta \text{ est un angle tel que } \begin{cases} \frac{x}{r} = \cos \theta \\ \frac{y}{r} = \sin \theta \end{cases}$$

Donner la forme algébrique de :

$$z_1 = 2e^{i\frac{5\pi}{2}}$$
 $z_2 = 4e^{-i\frac{4\pi}{3}}$ $z_3 = \sqrt{2}e^{i3\pi}$

Donner une forme exponentielle de :

$$z_4 = \sqrt{3} - i$$
 $z_5 = -4i$ $z_6 = 5 - 5i$
 $z_7 = -7$

⊳ Exercice 3.

Calculer : $\left(1 + e^{i\frac{\pi}{3}}\right)^{24}$

Soit z et z' deux complexes non-nuls, n un entier. Alors à 2π près :

$$\arg(zz') = \arg(z) + \arg(z')$$
$$\arg\left(\frac{z}{z'}\right) = \arg z - \arg z'$$
$$\arg(z^n) = n \arg z$$

Soit z et z' deux complexes non-nuls, n un entier. Alors à 2π près :

$$arg(zz') = arg(z) + arg(z')$$

<u>Démonstration</u>. On note $z = re^{i\theta}$ et $z' = r'e^{i\theta'}$.

Alors:
$$\arg(zz') = \arg(re^{i\theta}r'e^{i\theta'})$$

Soit z et z' deux complexes non-nuls, n un entier. Alors à 2π près :

$$arg(zz') = arg(z) + arg(z')$$

<u>Démonstration</u>. On note $z = re^{i\theta}$ et $z' = r'e^{i\theta'}$.

Alors:
$$\arg(zz') = \arg(re^{i\theta}r'e^{i\theta'})$$

= $\arg(rr'e^{i(\theta+\theta')})$

Soit z et z' deux complexes non-nuls, n un entier. Alors à 2π près :

$$arg(zz') = arg(z) + arg(z')$$

<u>Démonstration</u>. On note $z = re^{i\theta}$ et $z' = r'e^{i\theta'}$.

Alors:
$$\arg(zz') = \arg(re^{i\theta}r'e^{i\theta'})$$

= $\arg(rr'e^{i(\theta+\theta')})$
= $\theta + \theta' = \arg z + \arg z'$

Soit z et z' deux complexes non-nuls, n un entier. Alors à 2π près :

$$\arg(zz') = \arg(z) + \arg(z')$$
$$\arg\left(\frac{z}{z'}\right) = \arg z - \arg z'$$
$$\arg(z^n) = n \arg z$$

Démonstration.

De même pour les autres formules.

□B. Argument

Remarque

Visions géométrique

- de la multiplication,
- ▶ de l'inversion.

Chapitre B1. Nombres complexes

II. Angles

- A. L'ensemble U
- B. Argument
- C. Aspect dynamique
- D. Applications à la trigonométrie
- E. Applications à la géométrie

Définitions

(i) Translation de vecteur \vec{u} :

$$z\mapsto z+b \qquad \text{avec} \qquad b\in\mathbb{C}$$

(ii) Homothétie de centre O et de rapport k:

$$z\mapsto kz \qquad \quad \text{avec} \qquad k\in\mathbb{R}^*$$

(iii) Rotation de centre O et d'angle θ :

$$z\mapsto e^{i\theta}z$$
 avec $\theta\in\mathbb{R}$

(iv) Symétrie d'axe (Ox):

$$z\mapsto \bar{z}$$

Remarque

Soit $a = re^{i\theta} \in \mathbb{C}^*$.

L'application $z\mapsto az$ est la composée de

- la rotation de centre O et d'angle θ avec
- ▶ l'homothétie de centre O et de rapport r.

└II. Angles

C. Aspect dynamique

Définition

L'application

$$f: z \mapsto az + b$$
 $((a, b) \in \mathbb{C}^* \times \mathbb{C})$

est appelée similitude directe du plan.

Chapitre B1. Nombres complexes

II. Angles

- A. L'ensemble U
- B. Argument
- C. Aspect dynamique
- D. Applications à la trigonométrie
- E. Applications à la géométrie

Rappel

Pour tout $\theta \in \mathbb{R}$:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

└II. Angles

└D. Applications à la trigonométrie

Exemple 1

Calcul de $\cos 3\theta$ et $\sin 3\theta$ en fonction de $\cos \theta$ et $\sin \theta$.

Calcul de $\cos 3\theta$ et $\sin 3\theta$ en fonction de $\cos \theta$ et $\sin \theta$.

⊳ Exercice 4.

Retrouver les formules donnant $\cos 2\theta$ et $\sin 2\theta$ en fonction de $\cos \theta$ et $\sin \theta$.

Calculer $\cos 4\theta$ et $\sin 4\theta$ en fonction de $\cos \theta$ et $\sin \theta$ de deux manières différentes : grâce à la formule de Moivre, et en utilisant $\cos 4\theta = \cos 2(2\theta)$.

Proposition (Formules d'Euler)

Pour tout $\theta \in \mathbb{R}$:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Proposition (Formules d'Euler)

Pour tout $\theta \in \mathbb{R}$:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Démonstration.

$$\cos \theta = \operatorname{Re} e^{i\theta} = \frac{e^{i\theta} + \overline{e^{i\theta}}}{2}$$
 et $\overline{e^{i\theta}} = e^{-i\theta}$

$$\sin \theta = \operatorname{Im} e^{i\theta} = \frac{e^{i\theta} - \overline{e^{i\theta}}}{2i}$$

Exemple 2 (Linéarisation)

(i) Linéariser $\cos^3 t \sin t$ et calculer :

$$\int_0^{\frac{\pi}{2}} \cos^3 t \, \sin t \, dt$$

(ii) Calculer:

$$\int_0^{\frac{\pi}{2}} \sin 2t \, \cos 3t \, \sin 4t \, dt$$

D. Applications à la trigonométrie

⊳ Exercice 5.

Linéariser $\cos^2 t \, \sin^2 t$ puis calculer :

$$\int_0^{\frac{\pi}{4}} \cos^2 t \, \sin^2 t \, dt$$

└D. Applications à la trigonométrie

Exemple 3

Soit $x \in \mathbb{R}$ tel que $t = \tan \frac{x}{2}$ existe.

Alors $e^{i\frac{x}{2}} = \cos\frac{x}{2}(1+it)$, on élève au carré...

Exemple 4 (Factorisation par l'angle moitié, ou par l'angle moyen)

$$1 + e^{i\theta} =$$

$$e^{ip} + e^{iq} =$$

Ceci permet de retrouver les formules de transformation de somme en produit.

Exemple 4 (Factorisation par l'angle moitié, ou par l'angle moyen)

$$1 + e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}} \right) = 2\cos\frac{\theta}{2} e^{i\frac{\theta}{2}}$$
$$e^{ip} + e^{iq} =$$

Ceci permet de retrouver les formules de transformation de somme en produit.

Exemple 4 (Factorisation par l'angle moitié, ou par l'angle moyen)

$$1 + e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}} \right) = 2\cos\frac{\theta}{2} e^{i\frac{\theta}{2}}$$
$$e^{ip} + e^{iq} = e^{i\frac{p+q}{2}} \left(e^{i\frac{p-q}{2}} + e^{i\frac{-p+q}{2}} \right) = 2\cos\frac{p-q}{2} e^{i\frac{p+q}{2}}$$

Ceci permet de retrouver les formules de transformation de somme en produit. └D. Applications à la trigonométrie

Exemple 5

Soit θ un réel non multiple de 2π . Simplifier :

$$S_n = \sum_{k=0}^n \cos k\theta$$

Proposition (Transformation de Fresnel)

Soit $(a,b) \in \mathbb{R}^2$ et :

$$\forall t \in \mathbb{R}$$
 $f(t) = a\cos t + b\sin t$

Alors il existe deux réels A et φ tels que :

$$\forall t \in \mathbb{R}$$
 $f(t) = A\cos(t - \varphi)$

<u>Démonstration</u>. Soit $A = \sqrt{a^2 + b^2}$. Alors :

$$\frac{f(t)}{A} = \frac{a}{A}\cos t + \frac{b}{A}\sin t = a'\cos t + b'\sin t$$

avec
$$a' = \frac{a}{A}$$
 et $b' = \frac{b}{A}$

<u>Démonstration</u>. Soit $A = \sqrt{a^2 + b^2}$. Alors :

$$\frac{f(t)}{A} = \frac{a}{A}\cos t + \frac{b}{A}\sin t = a'\cos t + b'\sin t$$

avec
$$a' = \frac{a}{A}$$
 et $b' = \frac{b}{A}$

Comme $a'^2+b'^2=\frac{a^2+b^2}{A^2}=1$ alors il existe un réel φ tel que $a'=\cos\varphi$ et $b'=\sin\varphi$:

$$\frac{f(t)}{A} = \cos\varphi\cos t + \sin\varphi\sin t = \cos(t - \varphi) \quad \Box$$

Démonstration (autre version). On pose z=a+ib. Soit A=|z| et $\varphi=\arg z$. Alors : $f(t)=a\cos t+b\sin t \\ =A\cos\varphi\cos t+A\sin\varphi\sin t \\ =A\cos(t-\varphi)$

└II. Angles

└D. Applications à la trigonométrie

Exemple 6

Résoudre : $\sqrt{3}\cos x - \sin x = \sqrt{2}$

⊳ Exercice 6.

Résoudre l'équation : $\cos t + \sin t = 1$ Quel est le maximum de la fonction

$$f(t) = \cos t + \sin t$$

et en quels points est-il atteint?

II. Angles

- A. L'ensemble U
- B. Argument
- C. Aspect dynamique
- D. Applications à la trigonométrie
- E. Applications à la géométrie

└II. Angles

E. Applications à la géométrie

Lemme

Soit \vec{u} et \vec{u}' deux vecteurs, d'affixes z et z'.

Alors le complexe $\frac{z'}{z}$ admet pour argument une mesure de l'angle (\vec{u}, \vec{u}') .

Lemme

Soit \vec{u} et \vec{u}' deux vecteurs, d'affixes z et z'.

Alors le complexe $\frac{z'}{z}$ admet pour argument une mesure de l'angle (\vec{u}, \vec{u}') .

Démonstration. Soit :
$$a = \frac{z'}{z} = re^{i\theta}$$

Alors
$$z' = za$$
 donc $\arg z' = \arg z + \theta$.

Proposition

Soit A, B, C, D quatre points du plan, d'affixes respectives a, b, c, d, avec $a \neq b$ et $c \neq d$.

Alors $\frac{d-c}{b-a}$ admet pour module $\frac{CD}{AB}$ et pour argument une mesure de l'angle $\left(\overrightarrow{AB},\overrightarrow{CD}\right)$.

Proposition

Soit A, B, C, D quatre points du plan, d'affixes respectives a, b, c, d, avec $a \neq b$ et $c \neq d$.

Alors $\frac{d-c}{b-a}$ admet pour module $\frac{CD}{AB}$ et pour argument une mesure de l'angle $\left(\overrightarrow{AB},\overrightarrow{CD}\right)$.

Démonstration. Faire un dessin.

Corollaire

(i)
$$(AB)$$
 et (CD) parallèles \iff $\frac{d-c}{b-a} \in \mathbb{R}$

(ii)
$$(AB)$$
 et (CD) perpendiculaires

$$\iff \frac{d-c}{b-a} \in i\mathbb{R}$$

(iii)
$$AB = CD \iff \frac{d-c}{b-a} \in \mathbb{U}$$

$$A, B, C$$
 sont alignés ssi
$$\frac{c-a}{b-a} \in$$

$$ABC \text{ est rectangle en } A \text{ ssi } \frac{c-a}{b-a} \in$$

$$ABC$$
 est isocèle en A ssi $\frac{c-a}{b-a} \in$

$$ABC$$
 est équilatéral ssi
$$\frac{c-a}{b-a}$$

$$A, B, C \text{ sont alignés ssi} \qquad \frac{c-a}{b-a} \in \mathbb{R}$$

$$ABC \text{ est rectangle en } A \text{ ssi } \frac{c-a}{b-a} \in$$

$$ABC$$
 est isocèle en A ssi $\frac{c-a}{b-a} \in$

$$ABC$$
 est équilatéral ssi
$$\frac{c-a}{b-a}$$

$$A, B, C \text{ sont alignés ssi } \frac{c-a}{b-a} \in \mathbb{R}$$

$$ABC$$
 est rectangle en A ssi $\frac{c-a}{b-a} \in i\mathbb{R}$

$$ABC$$
 est isocèle en A ssi $\frac{c-a}{b-a} \in$

$$ABC$$
 est équilatéral ssi
$$\frac{c-a}{b-a}$$

$$A, B, C \text{ sont alignés ssi} \qquad \frac{c-a}{b-a} \in \mathbb{R}$$

$$ABC \text{ est rectangle en } A \text{ ssi } \frac{c-a}{b-a} \in \mathbf{i}\mathbb{R}$$

$$ABC$$
 est isocèle en A ssi $\frac{c-a}{b-a} \in \mathbb{U}$

$$ABC$$
 est équilatéral ssi
$$\frac{c-a}{b-a}$$

$$A, B, C \text{ sont alignés ssi} \qquad \frac{c-a}{b-a} \in \mathbb{R}$$

$$ABC \text{ est rectangle en } A \text{ ssi } \frac{c-a}{b-a} \in \mathbf{i}\mathbb{R}$$

$$ABC$$
 est isocèle en A ssi $\frac{c-a}{b-a} \in \mathbb{U}$

$$ABC$$
 est équilatéral ssi
$$\frac{c-a}{b-a} = e^{\pm i\frac{\pi}{3}}.$$

Soit A, B, C, D les points d'affixes respectives :

$$a = -1 + i$$

$$b = 4 + 3i$$

$$c = 3 - 9i$$

$$d = 1 + 6i$$

Représenter ces quatre points.

Quelles propriétés ont les triangles ABC et ABD?

- I. Généralités
- II. Angles

III. Équations algébriques

- A. Équations du second degré
- B. Racines de l'unité
- C. Racines n-èmes

IV. L'exponentielle complexe

III. Équations algébriques

- A. Équations du second degré
- B. Racines de l'unité
- C. Racines n-èmes

└─III. Équations algébriques

A. Équations du second degré

Lemme

Tout nombre complexe non-nul possède exactement deux racines carrées distinctes.

A. Équations du second degré

Lemme

Tout nombre complexe non-nul possède exactement deux racines carrées distinctes.

$$z^2 = a \iff s^2 e^{2i\varphi} = re^{i\theta}$$

Lemme

Tout nombre complexe non-nul possède exactement deux racines carrées distinctes.

$$z^2 = a \iff s^2 e^{2i\varphi} = re^{i\theta}$$

 $\iff s^2 = r \text{ et } 2\varphi = \theta + 2k\pi \ (k \in \mathbb{Z})$

A. Équations du second degré

Lemme

Tout nombre complexe non-nul possède exactement deux racines carrées distinctes.

$$\begin{split} z^2 &= a \iff s^2 e^{2i\varphi} = r e^{i\theta} \\ &\iff s^2 = r \quad \text{et} \quad 2\varphi = \theta + 2k\pi \; (k \in \mathbb{Z}) \\ &\iff s = \sqrt{r} \quad \text{et} \quad \varphi = \frac{\theta}{2} + 2k\pi \\ &\quad \text{ou} \quad \varphi = \frac{\theta}{2} + \pi + 2k\pi \end{split}$$

A. Équations du second degré

Lemme

Tout nombre complexe non-nul possède exactement deux racines carrées distinctes.

$$\begin{split} z^2 &= a \iff s^2 e^{2i\varphi} = r e^{i\theta} \\ &\iff s^2 = r \quad \text{et} \quad 2\varphi = \theta + 2k\pi \; (k \in \mathbb{Z}) \\ &\iff s = \sqrt{r} \quad \text{et} \quad \varphi = \frac{\theta}{2} + 2k\pi \\ &\quad \text{ou} \quad \varphi = \frac{\theta}{2} + \pi + 2k\pi \\ &\iff z = \sqrt{r} e^{i\frac{\theta}{2}} \quad \text{ou} \quad z = -\sqrt{r} e^{i\frac{\theta}{2}} \quad \Box \end{split}$$

Théorème

Soit a, b, c trois complexes avec a non-nul et :

$$(C) \qquad az^2 + bz + c = 0$$

Soit $\Delta = b^2 - 4ac$ le discriminant de (C).

Soit η une racine carrée de Δ .

Alors l'équation (C) admet pour solutions :

$$z_1 = rac{-b + \eta}{2a}$$
 et $z_2 = rac{-b - \eta}{2a}$

Ces solutions sont égales si et seulement si $\Delta = 0$.

└─III. Équations algébriques

A. Équations du second degré

Remarque

On ne peut pas écrire $\sqrt{\Delta}$ si Δ n'est pas un réel positif.

III. Équations algébriques

A. Équations du second degré

<u>Démonstration</u>. On utilise la forme canonique d'une expression du second degré.

<u>Démonstration</u>. On utilise la forme canonique d'une expression du second degré.

Exemple 8

Résoudre l'équation

$$z^2 - (3 - 8i)z - (13 + 11i) = 0$$

└─III. Équations algébriques

A. Équations du second degré

Proposition

Soit z_1 et z_2 les racines de $az^2 + bz + c = 0$. Alors :

$$z_1 + z_2 =$$
 et $z_1 z_2 =$

Proposition

Soit z_1 et z_2 les racines de $az^2 + bz + c = 0$. Alors :

$$z_1 + z_2 = -\frac{b}{a} \qquad \text{et} \qquad z_1 z_2 = \frac{c}{a}$$

Proposition

Soit z_1 et z_2 les racines de $az^2 + bz + c = 0$. Alors :

$$z_1 + z_2 = -\frac{b}{a} \qquad \text{et} \qquad z_1 z_2 = \frac{c}{a}$$

Démonstration.

Proposition

Soit z_1 et z_2 les racines de $az^2 + bz + c = 0$. Alors :

$$z_1 + z_2 = -\frac{b}{a} \qquad \text{et} \qquad z_1 z_2 = \frac{c}{a}$$

Démonstration.

Remarque

Il arrive que l'on puisse deviner une racine carrée du discriminant.

Exemple 9

Donner une racine carrée des complexes suivants :

$$\Delta_1 = -4 \qquad \Delta_2 = 5 \qquad \quad \Delta_3 = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$\Delta_4 = 2i \qquad \Delta_5 = -i \qquad \Delta_6 = -2 - 2i\sqrt{3}$$

⊳ Exercice 8.

Résoudre les équations suivantes :

a.
$$z^2 - (1+2i)z - 1 + i = 0$$

b.
$$z^2 - iz - 1 = 0$$

c.
$$z^2 - (1+i)z + 2 + 2i = 0$$

d.
$$z + \frac{1}{z} = i(\frac{3}{z} - 1)$$

e.
$$\begin{cases} z_1 + z_2 = 6i \\ z_1 z_2 = -13 \end{cases}$$

f.
$$z^2 + z - i = 0$$

III. Équations algébriques

- A. Équations du second degré
- B. Racines de l'unité
- C. Racines n-èmes

∟B. Racines de l'unité

Proposition

Pour tout $n \in \mathbb{N}^*$ l'équation

$$z^n = 1$$

admet exactement n solutions distinctes.

∟B. Racines de l'unité

Proposition

Pour tout $n \in \mathbb{N}^*$ l'équation

$$z^n = 1$$

admet exactement n solutions distinctes.

Définition

Ces solutions sont appelées racines n-èmes de l'unité. Leur ensemble est noté \mathbb{U}_n :

$$\mathbb{U}_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$$

└B. Racines de l'unité

Démonstration. Soit $z = re^{i\theta}$. Alors :

$$\begin{split} z^n &= 1 \iff r^n e^{in\theta} = 1 e^{i0} \\ &\iff r^n = 1 \quad \text{et} \quad n\theta = 2k\pi \quad (k \in \mathbb{Z}) \\ &\iff r = 1 \quad \text{et} \quad \theta = k\frac{2\pi}{n} \quad (k \in \mathbb{Z}) \end{split}$$

└─III. Équations algébriques

└B. Racines de l'unité

Démonstration. Soit $z = re^{i\theta}$. Alors :

$$z^n = 1 \iff r^n e^{in\theta} = 1e^{i0}$$

$$\iff r^n = 1 \quad \text{et} \quad n\theta = 2k\pi \quad (k \in \mathbb{Z})$$

$$\iff r = 1 \quad \text{et} \quad \theta = k\frac{2\pi}{n} \quad (k \in \mathbb{Z})$$
 Or: $0 \le \theta < 2\pi \iff 0 \le k < n$

Démonstration. Soit $z = re^{i\theta}$. Alors :

$$z^n = 1 \iff r^n e^{in\theta} = 1e^{i0}$$

 $\iff r^n = 1 \text{ et } n\theta = 2k\pi \quad (k \in \mathbb{Z})$
 $\iff r = 1 \text{ et } \theta = k\frac{2\pi}{n} \quad (k \in \mathbb{Z})$

$${\rm Or}: \qquad 0 \leqslant \theta < 2\pi \quad \Longleftrightarrow \quad 0 \leqslant k < n$$

Les racines n-èmes de l'unité sont donc les $e^{i\frac{2k\pi}{n}}$ pour $k=0,\ldots,n-1$.

└─III. Équations algébriques

∟B. Racines de l'unité

Proposition

$$\mathbb{U}_n = \left\{ e^{ik\frac{2\pi}{n}} \mid k = 0 \dots n - 1 \right\}$$

└─III. Équations algébriques

☐B. Racines de l'unité

Exemple 10

Représentation graphique de \mathbb{U}_1 , \mathbb{U}_2 , \mathbb{U}_3 et \mathbb{U}_4 . On note $j=e^{i\frac{2\pi}{3}}$.

Exemple 10

Représentation graphique de \mathbb{U}_1 , \mathbb{U}_2 , \mathbb{U}_3 et \mathbb{U}_4 . On note $j=e^{i\frac{2\pi}{3}}$.

Remarque

Les racines n-èmes de l'unité forment un polygone régulier à n côtés, inscrit dans le cercle trigonométrique.

De plus, l'ensemble \mathbb{U}_n est stable par multiplication et passage à l'inverse.

└III. Équations algébriques

└B. Racines de l'unité

⊳ Exercice 9.

Déterminer et représenter \mathbb{U}_6 et \mathbb{U}_8 .

☐B. Racines de l'unité

Théorème

Somme et produit des racines de l'unité :

$$\forall n \geqslant 2$$
 $\sum_{\zeta \in \mathbb{U}_n} \zeta = 0$ $\forall n \geqslant 1$ $\prod_{\zeta \in \mathbb{U}_n} \zeta = (-1)^{n-1}$

 $\zeta \in \mathbb{U}_n$

∟B. Racines de l'unité

Théorème

Somme et produit des racines de l'unité :

$$\forall n \geqslant 2 \qquad \sum_{\zeta \in \mathbb{U}_n} \zeta = 0$$

$$\forall n \geqslant 1 \qquad \prod_{\zeta \in \mathbb{U}_n} \zeta = (-1)^{n-1}$$

Démonstration.

└B. Racines de l'unité

Théorème

Somme et produit des racines de l'unité :

$$\forall n \geqslant 2 \qquad \sum_{\zeta \in \mathbb{U}_n} \zeta = 0$$

$$\forall n \geqslant 1 \qquad \prod_{\zeta \in \mathbb{U}_n} \zeta = (-1)^{n-1}$$

Démonstration.

III. Équations algébriques

- A. Équations du second degré
- B. Racines de l'unité
- C. Racines n-èmes

Rappel : racines n-èmes dans $\mathbb R$

Soit $a \in \mathbb{R}^*$. L'équation

$$x^n = a$$

admet

- ightharpoonup une unique solution si n est impair
- deux solutions si n est pair et a est positif
- ightharpoonup aucune solution si n est pair et a est négatif.

Rappel : racines n-èmes dans \mathbb{R}_+^*

Soit $a \in \mathbb{R}_+^*$. L'équation

$$x^n = a$$

admet une et une seule solution positive, que l'on appelle racine n-ème de a et que l'on note $\sqrt[n]{a}$.

└─III. Équations algébriques

Proposition - Racines n-èmes dans $\mathbb C$

Soit $a \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$.

Alors a admet exactement n racines n-èmes.

Proposition - Racines n-èmes dans $\mathbb C$

Soit $a \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$.

Alors a admet exactement n racines n-èmes.

Méthode

Pour obtenir les racines n-èmes de $a \in \mathbb{C}^*$:

- (i) On écrit $a = re^{i\theta}$.
 - Alors $b = \sqrt[n]{r}e^{i\frac{\theta}{n}}$ est **une** racine n-ème de a.
- (ii) Les racines n-èmes de a sont les $b\zeta$ où $\zeta \in \mathbb{U}_n$.

└C. Racines n-èmes

Proposition - Racines n-èmes dans $\mathbb C$

Soit $a \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$.

Alors a admet exactement n racines n-èmes.

Méthode

Pour obtenir les racines n-èmes de $a \in \mathbb{C}^*$:

- (i) On écrit $a=re^{i\theta}$. Alors $b=\sqrt[n]{r}e^{i\frac{\theta}{n}}$ est **une** racine n-ème de a.
- (ii) Les racines n-èmes de a sont les $b\zeta$ où $\zeta \in \mathbb{U}_n$.

Démonstration.

Proposition - Racines n-èmes dans $\mathbb C$

Soit $a \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$.

Alors a admet exactement n racines n-èmes.

Méthode

Pour obtenir les racines n-èmes de $a \in \mathbb{C}^*$:

- (i) On écrit $a=re^{i\theta}$. Alors $b=\sqrt[n]{r}e^{i\frac{\theta}{n}}$ est une racine n-ème de a.
- (ii) Les racines n-èmes de a sont les $b\zeta$ où $\zeta \in \mathbb{U}_n$.

Démonstration.

└─III. Équations algébriques

C. Racines n-èmes

Exemple 11

Résoudre l'équation : $z^3 = 8i$

Chapitre B1. Nombres complexes

LIII. Équations algébriques

C. Racines n-èmes

Exemple 11

Résoudre l'équation : $z^3 = 8i$

Remarque

Les solutions forment encore un polygone régulier à n côtés, mais il n'est pas en général inscrit dans le cercle trigonométrique.

Exemple 11

Résoudre l'équation : $z^3 = 8i$

Remarque

Les solutions forment encore un polygone régulier à n côtés, mais il n'est pas en général inscrit dans le cercle trigonométrique.

⊳ Exercice 10.

Résoudre l'équation : $32z^4 = \sqrt{3}i - 1$

- I. Généralités
- II. Angles
- III. Équations algébriques
- IV. L'exponentielle complexe

Définition

Soit $z = x + iy \in \mathbb{C}$. On note :

$$e^z = e^x e^{iy}$$

et on appelle exponentielle de z ce complexe.

Définition

Soit $z = x + iy \in \mathbb{C}$. On note :

$$e^z = e^x e^{iy}$$

et on appelle exponentielle de z ce complexe.

Remarque

Ceci définit une fonction $\exp: \mathbb{C} \to \mathbb{C}$.

(i)
$$\forall z \in \mathbb{C}$$

$$e^z \neq 0$$

(i)
$$\forall z \in \mathbb{C}$$

$$e^z \neq 0$$

(ii)
$$\forall (z,z') \in \mathbb{C}^2$$
 $e^{z+z'}=e^z e^{z'}$ et $e^{z-z'}=\frac{e^z}{e^{z'}}$

(i)
$$\forall z \in \mathbb{C}$$

$$e^z \neq 0$$

(ii)
$$\forall (z, z') \in \mathbb{C}^2$$

 $e^{z+z'} = e^z e^{z'} \quad \text{et} \quad e^{z-z'} = \frac{e^z}{e^{z'}}$

(iii)
$$\forall z \in \mathbb{C}$$

 $\overline{e^z} = e^{\overline{z}}$

(i)
$$\forall z \in \mathbb{C}$$
 $e^z \neq 0$

(ii)
$$\forall (z,z') \in \mathbb{C}^2$$
 $e^{z+z'} = e^z e^{z'}$ et $e^{z-z'} = \frac{e^z}{e^{z'}}$

$$(iii) \ \forall z \in \mathbb{C} \qquad \overline{e^z} = e^{\overline{z}}$$

(iv)
$$\forall z = x + iy \in \mathbb{C} \quad |e^z| = e^x \quad \text{et} \quad \arg(e^z) = y$$

(i)
$$\forall z \in \mathbb{C}$$
 $e^z \neq 0$

(ii)
$$\forall (z,z') \in \mathbb{C}^2$$
 $e^{z+z'} = e^z e^{z'}$ et $e^{z-z'} = \frac{e^z}{e^{z'}}$

(iii)
$$\forall z \in \mathbb{C}$$
 $\overline{e^z} = e^{\overline{z}}$

(iv)
$$\forall z = x + iy \in \mathbb{C} \quad |e^z| = e^x \quad \text{et} \quad \arg(e^z) = y$$

Ainsi $e^x e^{iy}$ est la forme exponentielle de e^z .

(i)
$$\forall z \in \mathbb{C}$$
 $e^z \neq 0$

(ii)
$$\forall (z, z') \in \mathbb{C}^2$$
 $e^{z+z'} = e^z e^{z'}$ et $e^{z-z'} = \frac{e^z}{e^{z'}}$

$$(iii) \ \forall z \in \mathbb{C} \qquad \overline{e^z} = e^{\overline{z}}$$

(iv)
$$\forall z = x + iy \in \mathbb{C}$$
 $|e^z| = e^x$ et $\arg(e^z) = y$

Ainsi $e^x e^{iy}$ est la forme exponentielle de e^z .

Démonstration. Laissée en exercice.

Tout complexe non-nul possède un antécédent par l'application exponentielle.

Tout complexe non-nul possède un antécédent par l'application exponentielle.

ou

$$\forall z \in \mathbb{C}^* \qquad \exists a \in \mathbb{C} \quad e^a = z$$

Tout complexe non-nul possède un antécédent par l'application exponentielle.

ou

$$\forall z \in \mathbb{C}^* \qquad \exists a \in \mathbb{C} \quad e^a = z$$

ou

L'application $\exp: \mathbb{C} \to \mathbb{C}^*$ est surjective.

Tout complexe non-nul possède un antécédent par l'application exponentielle.

Démonstration. Soit $z \in \mathbb{C}^*$.

Forme exponentielle : $z = re^{i\theta}$

Tout complexe non-nul possède un antécédent par l'application exponentielle.

Démonstration. Soit $z \in \mathbb{C}^*$.

Forme exponentielle : $z = re^{i\theta}$

r > 0 donc $a = \ln r + i\theta$ est bien défini.

Tout complexe non-nul possède un antécédent par l'application exponentielle.

Démonstration. Soit $z \in \mathbb{C}^*$.

Forme exponentielle : $z = re^{i\theta}$

r > 0 donc $a = \ln r + i\theta$ est bien défini.

 $e^a = z$ donc z admet bien un antécédent.

Soit $(z, z') \in \mathbb{C}^2$. Alors :

$$e^z = e^{z'} \iff \exists k \in \mathbb{Z} \quad z' = z + 2ik\pi$$

Soit $(z, z') \in \mathbb{C}^2$. Alors :

$$e^z = e^{z'} \iff \exists k \in \mathbb{Z} \quad z' = z + 2ik\pi$$

Remarque

Ceci montre que l'on n'a pas unicité de l'antécédent.

ou

 $\mbox{L'application} \quad \exp: \mathbb{C} \to \mathbb{C}^* \quad \mbox{ n'est pas injective}.$

ou

L'égalité $e^z = e^{z'}$ n'implique pas z = z'.

⊳ Exercice 11.

Résoudre les équations

a.
$$e^z = \sqrt{3} + i$$

b.
$$e^{iz\pi} = 1 - i$$

c.
$$e^{1-z} + e^z = \sqrt{2e}$$

Prochain chapitre

Chapitre B2 Ensembles