Mathématiques

Chapitre 0 Dérivation

MPSI – Lycée Bellevue – Toulouse

Année 2024-2025

I. Fonction dérivée

I. Fonction dérivée

II. Théorèmes

I. Fonction dérivée

II. Théorèmes

III. Dérivées successives

I. Fonction dérivée

II. Théorèmes

III. Dérivées successives

IV. Dérivation des fonctions complexes

I. Fonction dérivée

II. Théorèmes

III. Dérivées successives

IV. Dérivation des fonctions complexes

V. Convexité

I. Fonction dérivée

- A. Dérivabilité en un point
- B. Propriétés locales
- C. Fonction dérivée
- D. Opérations sur les dérivées
- E. Dérivée d'une application réciproque
- II. Théorèmes
- III. Dérivées successives
- IV. Dérivation des fonctions complexes
- V. Convexité

I. Fonction dérivée

- A. Dérivabilité en un point
- B. Propriétés locales
- C. Fonction dérivée
- D. Opérations sur les dérivées
- E. Dérivée d'une application réciproque

- ightharpoonup D partie de $\mathbb R$
- $ightharpoonup f:D o\mathbb{R}$ fonction
- $ightharpoonup x_0$ élément de D

Définition

$$D \subseteq \mathbb{R}$$
 $f: D \to \mathbb{R}$ $x_0 \in D$

f est dérivable en x_0 si la fonction

$$x \mapsto \frac{f(x) - f(x_0)}{x - x_0}$$

admet une limite finie lorsque x tend vers x_0 .

Définition

 $D \subseteq \mathbb{R}$ $f: D \to \mathbb{R}$ $x_0 \in D$.

Dans ce cas la dérivée ou le nombre dérivé de f en x_0 est :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Définition

$$D \subseteq \mathbb{R}$$
 $f: D \to \mathbb{R}$ $x_0 \in D$.

Dans ce cas la dérivée ou le nombre dérivé de f en x_0 est :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Remarque

On dit que

f admet un développement limité en x_0 à l'ordre 1 s'il existe deux réels a_0 et a_1 tels que :

$$f(x) = a_0 + a_1(x - x_0) + o(x - x_0)$$

Remarque

On dit que

f admet un développement limité en x_0 à l'ordre 1 : s'il existe deux réels a_0 et a_1 tels que :

$$f(x_0 + h) = a_0 + a_1 h + o(h)$$

Remarque

f admet un développement limité en x_0 à l'ordre 1 :

$$f(x) = a_0 + a_1(x - x_0) + o(x - x_0)$$

Proposition

f est dérivable en x_0

 $\iff f$ admet un dl en x_0 à l'ordre 1.

Remarque

f admet un développement limité en x_0 à l'ordre 1 :

$$f(x) = a_0 + a_1(x - x_0) + o(x - x_0)$$

Proposition

f est dérivable en x_0

 $\iff f$ admet un dl en x_0 à l'ordre 1.

Dans ce cas ce dl est :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

Remarque

f admet un développement limité en x_0 à l'ordre 1 :

$$f(x_0 + h) = a_0 + a_1 h + o(h)$$

Proposition

f est dérivable en x_0

 $\iff f$ admet un dl en x_0 à l'ordre 1.

Dans ce cas ce dl est :

$$f(x_0 + h) = f(x_0) + hf'(x_0) + o(h)$$

Remarque

f admet un développement limité en x_0 à l'ordre 1 :

$$f(x) = a_0 + a_1(x - x_0) + o(x - x_0)$$

Proposition

f est dérivable en x_0

 $\iff f$ admet un dl en x_0 à l'ordre 1.

Dans ce cas ce dl est :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

Démonstration.

Remarque

f admet un développement limité en x_0 à l'ordre 1 :

$$f(x) = a_0 + a_1(x - x_0) + o(x - x_0)$$

Proposition

f est dérivable en x_0

 $\iff f$ admet un dl en x_0 à l'ordre 1.

Dans ce cas ce dl est :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

Démonstration.

Exemple 1

(i) $f: x \mapsto x^n$ est dérivable en x_0 de dérivée : $f'(x_0) = nx_0^{n-1}$

Exemple 1

- (i) $f: x \mapsto x^n$ est dérivable en x_0 de dérivée : $f'(x_0) = nx_0^{n-1}$
- (ii) $x \mapsto \sqrt{x}$ n'est pas dérivable en 0 mais est dérivable en tout point x_0 de \mathbb{R}_+^* .

Exemple 1

- (i) $f: x \mapsto x^n$ est dérivable en x_0 de dérivée : $f'(x_0) = nx_0^{n-1}$
- (ii) $x \mapsto \sqrt{x}$ n'est pas dérivable en 0 mais est dérivable en tout point x_0 de \mathbb{R}_+^* .
- (iii) $x \mapsto \frac{1}{x}$ est dérivable en tout point x_0 de \mathbb{R}^* .

Exemple 1

- (i) $f: x \mapsto x^n$ est dérivable en x_0 de dérivée : $f'(x_0) = nx_0^{n-1}$
- (ii) $x \mapsto \sqrt{x}$ n'est pas dérivable en 0 mais est dérivable en tout point x_0 de \mathbb{R}_+^* .
- (iii) $x \mapsto \frac{1}{x}$ est dérivable en tout point x_0 de \mathbb{R}^* .
- (iv) $\ln \cot \exp \operatorname{sont} \operatorname{d\acute{e}rivables} \operatorname{en} \operatorname{tout} \operatorname{point}.$

⊳ Exercice 1.

On admet que la fonction sinus est dérivable en 0, de dérivée 1.

- a. Démontrer que la fonction cosinus est dérivable en 0, de dérivée 0.
- b. Démontrer que les fonctions sinus et cosinus sont dérivables en tout point de $\mathbb R$ et donner leurs dérivées.

Définition

La fonction f admet une tangente en x_0 si son taux d'accroissement en x_0 admet une limite $\ell \in \mathbb{R}$.

Définition

La fonction f admet une tangente en x_0 si son taux d'accroissement en x_0 admet une limite $\ell \in \mathbb{R}$.

Si cette limite est finie alors elle vaut $f'(x_0)$. La tangente en x_0 à la courbe de f est la droite d'équation :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Définition

La fonction f admet une tangente en x_0 si son taux d'accroissement en x_0 admet une limite $\ell \in \mathbb{R}$.

Si cette limite est finie alors elle vaut $f'(x_0)$. La tangente en x_0 à la courbe de f est la droite d'équation :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Si cette limite est infinie alors la tangente en x_0 à la courbe de f est la droite d'équation :

$$x = x_0$$

I. Fonction dérivée

- A. Dérivabilité en un point
- B. Propriétés locales
- C. Fonction dérivée
- D. Opérations sur les dérivées
- E. Dérivée d'une application réciproque

B. Propriétés locales

Théorème

f dérivable

f continue

B. Propriétés locales

Théorème

$$f$$
 dérivable \implies f continue

Remarque

La réciproque est fausse!

f dérivable $\begin{tabular}{ll} \label{fig:final} \end{table} f$ continue

−B. Propriétés locales

Théorème

$$f$$
 dérivable \implies f continue

Remarque

La réciproque est fausse!

 $f \text{ d\'erivable} \qquad \longleftarrow \qquad f \text{ continue}$

La fonction $x\mapsto |x|$ est continue en 0 n'est pas dérivable en 0.

└B. Propriétés locales

Théorème

 $f \text{ d\'erivable} \qquad \Longrightarrow \qquad f \text{ continue}$

Démonstration.

└B. Propriétés locales

Théorème

 $f \text{ d\'erivable} \qquad \Longrightarrow \qquad f \text{ continue}$

Démonstration.

Définition

f est dérivable à gauche en x_0 si

$$\lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

existe et est finie.

On note alors $f'_q(x_0)$ cette limite.

Définition

f est dérivable à droite en x_0 si

$$\lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

existe et est finie.

On note alors $f'_d(x_0)$ cette limite.

Exemple 2

La fonction $f: x \mapsto |x|$ est dérivable à gauche et à droite en 0, avec :

$$f'_g(0) = -1$$
 et $f'_d(0) = 1$

Elle n'est pas dérivable en 0.

☐B. Propriétés locales

Rappel

 x_0 est intérieur à D si D est voisinage de x_0 :

$$\exists \varepsilon > 0$$
 $]x_0 - \varepsilon, x_0 + \varepsilon[\subseteq D]$

−B. Propriétés locales

Rappel

 x_0 est intérieur à D si D est voisinage de x_0 :

$$\exists \varepsilon > 0$$
 $]x_0 - \varepsilon, x_0 + \varepsilon[\subseteq D]$

Proposition

Soit x_0 intérieur à D.

(i) Si f est dérivable en x_0 alors f est dérivable à gauche et à droite en x_0 de même dérivée.

Dans ce cas : $f'(x_0) = f'_a(x_0) = f'_d(x_0)$

−B. Propriétés locales

Proposition

Soit x_0 intérieur à D.

(i) Si f est dérivable en x_0 alors f est dérivable à gauche et à droite en x_0 de même dérivée.

Dans ce cas : $f'(x_0) = f'_g(x_0) = f'_d(x_0)$

(ii) Si f est dérivable à gauche et à droite en x_0 alors f est continue en x_0 .

☐B. Propriétés locales

Proposition

Soit x_0 intérieur à D.

(i) Si f est dérivable en x_0 alors f est dérivable à gauche et à droite en x_0 de même dérivée.

Dans ce cas : $f'(x_0) = f'_g(x_0) = f'_d(x_0)$

<u>Démonstration</u>. (i) Si f est dérivable en x_0 :

$$\lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Donc f est dérivable à gauche et $f'_g(x_0) = f'(x_0)$.

☐B. Propriétés locales

Proposition

Soit x_0 intérieur à D.

(i) Si f est dérivable en x_0 alors f est dérivable à gauche et à droite en x_0 de même dérivée.

Dans ce cas : $f'(x_0) = f'_g(x_0) = f'_d(x_0)$

<u>Démonstration</u>. (i) Si f est dérivable en x_0 :

$$\lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Donc f est dérivable à droite et $f'_d(x_0) = f'(x_0)$.

Proposition

Soit x_0 intérieur à D.

(i) Si f est dérivable en x_0 alors f est dérivable à gauche et à droite en x_0 de même dérivée.

Dans ce cas :
$$f'(x_0) = f'_g(x_0) = f'_d(x_0)$$

<u>Démonstration</u>. Si f est dérivable à gauche et à droite en x_0 de mêmes dérivées alors :

$$\lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

Proposition

Soit x_0 intérieur à D.

(i) Si f est dérivable en x_0 alors f est dérivable à gauche et à droite en x_0 de même dérivée.

Dans ce cas :
$$f'(x_0) = f'_g(x_0) = f'_d(x_0)$$

<u>Démonstration</u>. Si f est dérivable à gauche et à droite en x_0 de mêmes dérivées alors :

Donc
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_g(x_0) = f'_d(x_0)$$

└─B. Propriétés locales

Proposition

Soit x_0 intérieur à D.

(i) Si f est dérivable à gauche et à droite en x_0 alors f est continue en x_0 .

<u>Démonstration</u>.

f dérivable à gauche et à droite en x_0

 $\implies f$ continue à gauche et à droite en x_0

 $\implies f$ continue en x_0 .

Chapitre 0. Dérivation

I. Fonction dérivée

- A. Dérivabilité en un point
- B. Propriétés locales
- C. Fonction dérivée
- D. Opérations sur les dérivées
- E. Dérivée d'une application réciproque

C. Fonction dérivée

On note dorénavant I un intervalle de \mathbb{R} .

└C. Fonction dérivée

Définition

$$f: I \to \mathbb{R}$$
 $A \subseteq I$

f est dérivable sur A si f est dérivable en tout point de A.

Définition

$$f: I \to \mathbb{R} \qquad A \subseteq I$$

f est dérivable sur A si f est dérivable en tout point de A.

f est dérivable si elle est dérivable sur I.

Définition

$$f: I \to \mathbb{R}$$
 $A \subseteq I$

f est dérivable sur A si f est dérivable en tout point de A.

f est dérivable si elle est dérivable sur I.

Si f est dérivable sur A alors la fonction

$$f': A \longrightarrow \mathbb{R}$$

 $x \longmapsto f'(x)$

est appelée fonction dérivée ou dérivée de f sur A.

C. Fonction dérivée

Notations

f'

$$\frac{\mathrm{d}f}{\mathrm{d}x}$$

Chapitre 0. Dérivation

I. Fonction dérivée

- A. Dérivabilité en un point
- B. Propriétés locales
- C. Fonction dérivée
- D. Opérations sur les dérivées
- E. Dérivée d'une application réciproque

Proposition

$$f, g: I \to \mathbb{R}$$
 dérivables $(\lambda, \mu) \in \mathbb{R}^2$

- (i) $\lambda f + \mu g$ est dérivable
- (ii) fg est dérivable
- (iii) $\frac{1}{g}$ est dérivable
- *(iv)* $\frac{f}{g}$ est dérivable

Proposition

$$f,\,g:I o\mathbb{R}$$
 dérivables $(\lambda,\mu)\in\mathbb{R}^2$
 (i) $\lambda f + \mu g$ est dérivable $(\lambda f + \mu g)' = \lambda f' + \mu g'$
 (ii) fg est dérivable $(fg)' = f'g + fg'$
 (iii) $\frac{1}{g}$ est dérivable $(\frac{1}{g})' = -\frac{g'}{g^2}$
 (iv) $\frac{f}{g}$ est dérivable $(\frac{f}{g})' = \frac{f'g - fg'}{g^2}$

Remarque

En résumé :

$$(\lambda f + \mu g)' = \lambda f' + \mu g' \qquad (fg)' = f'g + fg'$$

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2} \qquad \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

<u>Démonstration</u>. Soit $x_0 \in I$

(i)
$$\lambda f + \mu g$$
 dérivable : $\forall x \in I \setminus \{x_0\}$

$$\frac{(\lambda f + \mu g)(x) - (\lambda f + \mu g)(x_0)}{x - x_0}$$

$$= \frac{\lambda f(x) + \mu g(x) - \lambda f(x_0) - \mu g(x_0)}{x - x_0}$$

$$= \lambda \frac{f(x) - f(x_0)}{x - x_0} + \mu \frac{g(x) - g(x_0)}{x - x_0}$$

$$\underset{x \to x_0}{\longrightarrow} \lambda f'(x_0) + \mu g'(x_0)$$

Démonstration. Soit $x_0 \in I$

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

Démonstration. Soit $x_0 \in I$

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$
$$= \frac{f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0}$$

Démonstration. Soit $x_0 \in I$

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \frac{f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0}$$

$$= f(x)\frac{g(x) - g(x_0)}{x - x_0} + \frac{f(x) - f(x_0)}{x - x_0}g(x_0)$$

Démonstration. Soit $x_0 \in I$

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \frac{f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0}$$

$$= f(x)\frac{g(x) - g(x_0)}{x - x_0} + \frac{f(x) - f(x_0)}{x - x_0}g(x_0)$$

$$\xrightarrow{x \to x_0} f(x_0)g'(x_0) + f'(x_0)g(x_0)$$

Démonstration. Soit $x_0 \in I$

(ii) fg dérivable : (avec les DL)

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h\varepsilon(h)$$

et $g(x_0 + h) = g(x_0) + hg'(x_0) + h\eta(h)$

Démonstration. Soit $x_0 \in I$

(ii) fg dérivable : (avec les DL)

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h\varepsilon(h)$$

et $g(x_0 + h) = g(x_0) + hg'(x_0) + h\eta(h)$

Par produit :

$$(fg)(x_0 + h) = f(x_0 + h) \times g(x_0 + h)$$

$$= (fg)(x_0) + h(f'(x_0)g(x_0) + f(x_0)g'(x_0)) + h\nu(h)$$
avec $\nu(h) \xrightarrow[h \to 0]{} 0$.

Démonstration. Soit $x_0 \in I$

(ii) fg dérivable : (avec les DL)

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h\varepsilon(h)$$

et $g(x_0 + h) = g(x_0) + hg'(x_0) + h\eta(h)$

Par produit :

$$(fg)(x_0 + h) = f(x_0 + h) \times g(x_0 + h)$$

$$= (fg)(x_0) + h \underbrace{\left(f'(x_0)g(x_0) + f(x_0)g'(x_0)\right)}_{(fg)'(x_0)} + h\nu(h)$$
avec $\nu(h) \xrightarrow[h \to 0]{} 0$.

Démonstration.

(iii)
$$\left(\frac{1}{g}\right)$$
 dérivable :

Voir plus bas, en composant g et $x \mapsto \frac{1}{x}$.

(iv)
$$\left(\frac{f}{g}\right)$$
 dérivable :

On utilise les deux points précédents.

Chapitre 0. Dérivation

I. Fonction dérivée

- D. Opérations sur les dérivées

Démonstration.

Ceci est vrai pour tout x_0 de I ou de I', donc les fonctions concernées sont bien dérivables sur I ou sur I', et les fonctions dérivées sont bien données par les formules ci-dessus.

Proposition

f, $g:I\to\mathbb{R}$ dérivables

- (i) f + g est dérivable
- (ii) fg est dérivable

Remarque

L'ensemble $\mathcal{D}(I,\mathbb{R})$ des fonctions dérivables de I dans \mathbb{R} est un anneau.

Proposition

$$u: I \to \mathbb{R}$$
 $f: J \to \mathbb{R}$ $u(I) \subseteq J$

Si u et f sont dérivables alors $f\circ u$ est dérivable de dérivée :

Proposition

$$u:I\to\mathbb{R} \qquad f:J\to\mathbb{R} \qquad u(I)\subseteq J$$

Si u et f sont dérivables alors $f\circ u$ est dérivable de dérivée :

$$\forall x \in I \quad (f \circ u)'(x) = u'(x) f'(u(x))$$

i.e., $(f \circ u)' = u' \cdot f' \circ u$

$$\frac{(f \circ u)(x) - (f \circ u)(x_0)}{x - x_0} = \frac{f(u(x)) - f(u(x_0))}{u(x) - u(x_0)} \frac{u(x) - u(x_0)}{x - x_0}$$

$$\frac{(f \circ u)(x) - (f \circ u)(x_0)}{x - x_0}$$

$$= \frac{f(u(x)) - f(u(x_0))}{u(x) - u(x_0)} \frac{u(x) - u(x_0)}{x - x_0}$$

$$\xrightarrow{x \to x_0} f'(u(x_0)) u'(x_0)$$

Proposition

$$u: I \to \mathbb{R}$$
 $f: J \to \mathbb{R}$ $u(I) \subseteq J$

Si u et f sont dérivables alors $f\circ u$ est dérivable de dérivée :

$$\forall x \in I \quad (f \circ u)'(x) = u'(x) f'(u(x))$$

i.e.,
$$(f \circ u)' = u' \cdot f' \circ u$$

Proposition

$$u: I \to \mathbb{R}$$
 $f: J \to \mathbb{R}$ $u(I) \subseteq J$

Si u et f sont dérivables alors $f\circ u$ est dérivable de dérivée :

$$\forall x \in I \quad (f \circ u)'(x) = u'(x) \, f'(u(x))$$
 i.e.,
$$(f \circ u)' = u' \cdot f' \circ u$$

Exemples

(i) Soit $g:I\to\mathbb{R}^*$ dérivable et $f:x\mapsto \frac{1}{x}$ Alors $f\circ g$ est dérivable par composition et

$$\left(\frac{1}{g}\right)'(x) =$$

Exemples

(i) Soit $g:I\to\mathbb{R}^*$ dérivable et $f:x\mapsto \frac{1}{x}$ Alors $f\circ g$ est dérivable par composition et

$$\left(\frac{1}{g}\right)'(x) = -\frac{g'(x)}{g^2(x)}$$

Exemples

(ii) Soit α un réel quelconque, et $f: x \mapsto x^{\alpha}$ Alors f est dérivable sur \mathbb{R}_+^* et

$$f'(x) =$$

Exemples

(ii) Soit α un réel quelconque, et $f: x \mapsto x^{\alpha}$ Alors f est dérivable sur \mathbb{R}_+^* et

$$f'(x) = \alpha x^{\alpha - 1}$$

Exemples

(iii) Soit u une fonction dérivable. Alors les fonctions e^u , $\ln u$, u^α sont dérivables et

$$(e^u)' = (\ln u)' =$$

$$(u^{\alpha})' =$$

Exemples

(iii) Soit u une fonction dérivable. Alors les fonctions e^u , $\ln u$, u^α sont dérivables et

$$(e^u)' = u'e^u \qquad (\ln u)' = \frac{u'}{u}$$

$$(u^{\alpha})' = \alpha u' u^{\alpha - 1}$$

⊳ Exercice 2.

Étudier la dérivabilité et calculer les dérivées des fonctions suivantes :

$$f(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$
$$g(x) = \arctan x + \arctan \frac{1}{x}$$
$$h(x) = \arcsin \frac{x - 1}{x + 1}$$

Chapitre 0. Dérivation

I. Fonction dérivée

- A. Dérivabilité en un point
- B. Propriétés locales
- C. Fonction dérivée
- D. Opérations sur les dérivées
- E. Dérivée d'une application réciproque

E. Dérivée d'une application réciproque

Proposition

 $I,\ J \ \text{intervalles} \qquad f:I \to J \ \text{d\'erivable et bijective}.$

Alors $f^{-1}: J \to I$ est dérivable sur :

Proposition

I, J intervalles $f:I \to J$ dérivable et bijective.

Alors $f^{-1}: J \to I$ est dérivable sur :

$$J' = \left\{ y \in J \mid f'(f^{-1}(y)) \neq 0 \right\}$$

Sa dérivée est

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$
 e., $\forall y \in J' \quad (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$

E. Dérivée d'une application réciproque

Proposition

 $I,\ J$ intervalles $f:I\to J$ dérivable et bijective.

Alors $f^{-1}: J \to I$ est dérivable sur :

$$J' = \left\{ y \in J \mid f'(f^{-1}(y)) \neq 0 \right\}$$

 f^{-1} n'est dérivable en aucun point de $J \setminus J'$. Elle admet des tangentes verticales en ces points.

Démonstration.
$$y_0 \in J'$$
 $x_0 = f^{-1}(y_0)$

$$\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0}$$

E. Dérivée d'une application réciproque

Démonstration.
$$y_0 \in J'$$
 $x_0 = f^{-1}(y_0)$

$$\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{f^{-1}(y) - x_0}{f(f^{-1}(y)) - f(x_0)}$$
$$= \frac{1}{\frac{f(f^{-1}(y)) - f(x_0)}{f^{-1}(y) - x_0}}$$

Démonstration.
$$y_0 \in J'$$
 $x_0 = f^{-1}(y_0)$

$$\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{f^{-1}(y) - x_0}{f(f^{-1}(y)) - f(x_0)}$$
$$= \frac{1}{\frac{f(f^{-1}(y)) - f(x_0)}{f^{-1}(y) - x_0}}$$
$$f'(x_0) \neq 0: \qquad \xrightarrow{y \to y_0} \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

Démonstration.
$$y_0 \in J'$$
 $x_0 = f^{-1}(y_0)$

$$\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{f^{-1}(y) - x_0}{f(f^{-1}(y)) - f(x_0)}$$
$$= \frac{1}{\frac{f(f^{-1}(y)) - f(x_0)}{f^{-1}(y) - x_0}}$$

$$f'(x_0) = 0: \qquad \underset{y \to y_0}{\longrightarrow} \pm \infty$$

Chapitre 0. Dérivation

└I. Fonction dérivée

E. Dérivée d'une application réciproque

Exemple 3

Dérivabilité de l'arc-sinus.

E. Dérivée d'une application réciproque

Exemple 3

Dérivabilité de l'arc-sinus.

Remarque

On démontre également que

$$\arccos:[-1,1]\to[0,\pi]$$

est dérivable sur]-1,1[, de dérivée :

$$\arccos':]-1,1[\longrightarrow \mathbb{R}$$

$$x \longmapsto -\frac{1}{\sqrt{1-x^2}}$$

E. Dérivée d'une application réciproque

Exemple 3

Dérivabilité de l'arc-sinus.

Remarque

On démontre également que

$$\arctan: \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

est dérivable sur \mathbb{R} , de dérivée :

$$\arctan': \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{1+x^2}$$

> Exercice 3.

- a. Justifier que la fonction cosinus hyperbolique réalise une bijection de \mathbb{R}_+ dans un intervalle à préciser.
- b. On note argch la réciproque de ch. Simplifier $\operatorname{sh}(\operatorname{argch}(x))$.
- c. Sur quel ensemble la fonction argch est-elle dérivable ? Calculer sa dérivée.

Remarque

Toutes les fonctions usuelles sont dérivables sauf :

- $x \mapsto \sqrt{x}$: définie et continue sur \mathbb{R}_+ dérivable sur \mathbb{R}_+^*
- $x \mapsto |x|$: définie et continue sur \mathbb{R} dérivable sur \mathbb{R}^*
- lacktriangledown arccos et \arcsin : définies et continues sur [-1,1] dérivables sur]-1,1[

E. Dérivée d'une application réciproque

Remarque

Toutes les fonctions usuelles sont dérivables sauf :

 $ightharpoonup x\mapsto \lfloor x \rfloor$: continue et dérivable sur $\mathbb{R}\setminus \mathbb{Z}$

$$\forall x \in \mathbb{R} \setminus \mathbb{Z} \qquad \frac{\mathrm{d} \lfloor x \rfloor}{\mathrm{d} x} =$$

E. Dérivée d'une application réciproque

Remarque

Toutes les fonctions usuelles sont dérivables sauf :

 $ightharpoonup x\mapsto \lfloor x\rfloor$: continue et dérivable sur $\mathbb{R}\setminus\mathbb{Z}$

$$\forall x \in \mathbb{R} \setminus \mathbb{Z} \qquad \frac{\mathrm{d}[x]}{\mathrm{d}x} = 0$$

Chapitre 0. Dérivation

I. Fonction dérivée

II. Théorèmes

- A. Extremum local
- B. Théorème de Rolle
- C. Accroissements finis
- D. Croissance des fonctions
- E. Prolongement de la dérivée
- III. Dérivées successives
- IV. Dérivation des fonctions complexes
- V. Convexité

Chapitre 0. Dérivation

II. Théorèmes

- A. Extremum local
- B. Théorème de Rolle
- C. Accroissements finis
- D. Croissance des fonctions
- E. Prolongement de la dérivée

Définition

I intervalle $f: I \to \mathbb{R}$ fonction

f présente un maximum local en x_0 si elle présente un maximum sur un voisinage de x_0 .

f présente un minimum local en x_0 si elle présente un minimum sur un voisinage de x_0 .

f présente un extremum local en x_0 si elle présente un maximum ou un minimum local en x_0 .

Définition

I intervalle $f: I \to \mathbb{R}$ fonction

f présente un maximum local en x_0 si elle présente un maximum sur un voisinage de x_0 .

f présente un minimum local en x_0 si elle présente un minimum sur un voisinage de x_0 .

f présente un extremum local en x_0 si elle présente un maximum ou un minimum local en x_0 .

Remarque

Un extremum est aussi appelé extremum global.

☐II. Théorèmes ☐A. Extremum local

Théorème

 x_0 intérieur à I $f:I\to\mathbb{R}$ dérivable en x_0 Si f présente un extremum local en x_0 alors $f'(x_0)=0$.

 x_0 intérieur à I $f:I\to\mathbb{R}$ dérivable en x_0

Si f présente un extremum local en x_0

alors $f'(x_0) = 0$.

Définition

Un point critique de f est un zéro de sa dérivée :

$$f'(x_0) = 0$$

$$x_0$$
 intérieur à I $f:I\to\mathbb{R}$ dérivable en x_0

Si
$$f$$
 présente un extremum local en x_0 alors $f'(x_0) = 0$.

Définition

Un point critique de f est un zéro de sa dérivée :

$$f'(x_0) = 0$$

Remarques

(i) La réciproque est fausse.

 x_0 intérieur à I $f:I\to\mathbb{R}$ dérivable en x_0

Si f présente un extremum local en x_0

alors $f'(x_0) = 0$.

Remarques

- (i) La réciproque est fausse.
- (ii) Le théorème est faux si x_0 n'est pas intérieur à I.

 x_0 intérieur à I $f:I\to\mathbb{R}$ dérivable en x_0

Si f présente un extremum local en x_0 alors $f'(x_0) = 0$.

Remarques

- (i) La réciproque est fausse.
- (ii) Le théorème est faux si x_0 n'est pas intérieur à I.
- (iii) Le théorème est faux également si f n'est pas dérivable en x_0 .

 x_0 intérieur à I $f:I\to\mathbb{R}$ dérivable en x_0 Si f présente un extremum local en x_0 alors $f'(x_0)=0$.

<u>Démonstration</u>. Supposons que f présente un maximum en x_0 sur $]x_0 - c, x_0 + c[$. Alors :

$$\forall x \in [x_0 - c, x_0]$$
 $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$

Th de comparaison : $f'(x_0) \ge 0$.

 x_0 intérieur à I $f:I\to\mathbb{R}$ dérivable en x_0 Si f présente un extremum local en x_0 alors $f'(x_0)=0$.

<u>Démonstration</u>. Supposons que f présente un maximum en x_0 sur $]x_0 - c, x_0 + c[$. Alors :

$$\forall x \in]x_0, x_0 + c] \qquad \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0$$

Th de comparaison : $f'(x_0) \ge 0$ et $f'(x_0) \le 0$.

$$x_0$$
 intérieur à I $f:I\to\mathbb{R}$ dérivable en x_0 Si f présente un extremum local en x_0 alors $f'(x_0)=0$.

<u>Démonstration</u>. Supposons que f présente un maximum en x_0 sur $]x_0 - c, x_0 + c[$. $f'(x_0) \ge 0$ et $f'(x_0) \le 0$ donc $f'(x_0) = 0$.

Chapitre 0. Dérivation

II. Théorèmes

- A. Extremum local
- B. Théorème de Rolle
- C. Accroissements finis
- D. Croissance des fonctions
- E. Prolongement de la dérivée

└II. Théorèmes

☐B. Théorème de Rolle

On note a et b deux réels tels que a < b.

Théorème de Rolle

- $f:[a,b] \to \mathbb{R}$ telle que :
 - ightharpoonup f est continue sur [a,b]
 - f est dérivable sur]a,b[
 - f(a) = f(b)

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

- $f:[a,b]\to\mathbb{R}$ telle que :
 - ightharpoonup f est continue sur [a,b]
 - f est dérivable sur]a,b[
 - f(a) = f(b)

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Remarque

Toutes les hypothèses sont indispensables.

- $f:[a,b] \to \mathbb{R}$ telle que :
 - ightharpoonup f est continue sur [a,b]
 - f est dérivable sur]a,b[
 - f(a) = f(b)

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

<u>Démonstration</u>.

 $f:[a,b]\to\mathbb{R}$ telle que :

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[
- f(a) = f(b)

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Démonstration.

- $f:[a,b] \to \mathbb{R}$ telle que :
 - ightharpoonup f est continue sur [a,b]
 - ightharpoonup f est dérivable sur]a,b[
 - f(a) = f(b)

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Exemple 4

Soit $f: \mathbb{R} \to \mathbb{R}$ polynomiale de degré n admettant n racines réelles distinctes. Alors f' admet exactement n-1 racines réelles distinctes.

∟B. Théorème de Rolle

Théorème de Rolle

 $f:[a,b]\to\mathbb{R}$ telle que :

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[
- f(a) = f(b)

Alors il existe $c \in [a, b]$ tel que f'(c) = 0.

Exemple 5

Si un mobile M parcourant une droite passe deux fois par le même point alors sa vitesse s'annule pendant le trajet.

Chapitre 0. Dérivation

II. Théorèmes

- A. Extremum local
- B. Théorème de Rolle
- C. Accroissements finis
- D. Croissance des fonctions
- E. Prolongement de la dérivée

Théorème des accroissements finis

- $f:[a,b] o \mathbb{R}$ telle que :
 - ightharpoonup f est continue sur [a,b]
 - f est dérivable sur]a,b[

Alors il existe $c \in]a, b[$ tel que :

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Théorème des accroissements finis

 $f:[a,b]\to\mathbb{R}$ telle que :

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[

Alors il existe $c \in]a, b[$ tel que :

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Remarques

(i) Le théorème de Rolle est un cas particulier du théorème des accroissements finis.

Théorème des accroissements finis

 $f:[a,b]\to\mathbb{R}$ telle que :

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[

Alors il existe $c \in]a, b[$ tel que :

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Remarques

(i) Le théorème de Rolle et le théorème des accroissements finis sont équivalents.

Théorème des accroissements finis

 $f:[a,b]\to\mathbb{R}$ telle que :

- ightharpoonup f est continue sur [a,b]
- f est dérivable sur]a,b[

Alors il existe $c \in]a, b[$ tel que :

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Remarques

(ii) Géométriquement :

Théorème des accroissements finis

 $f:[a,b]\to\mathbb{R}$ telle que :

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[

Alors il existe $c \in]a, b[$ tel que :

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Démonstration.

Théorème des accroissements finis

 $f:[a,b] \to \mathbb{R}$ telle que :

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[

Alors il existe $c \in]a, b[$ tel que :

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Démonstration.

$$f:[a,b]\to\mathbb{R}$$
 telle que :

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[
- ▶ II existe $(m, M) \in \mathbb{R}^2$ tel que :

$$\forall t \in]a, b[m \leqslant f'(t) \leqslant M$$

Alors:

$$m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$

 $f:[a,b]\to\mathbb{R}$ telle que :

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[
- ▶ Il existe $(m, M) \in \mathbb{R}^2$ tel que :

$$\forall t \in]a, b[m \leqslant f'(t) \leqslant M$$

Alors:

$$m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$

Démonstration.

 $f:[a,b]\to\mathbb{R}$ telle que :

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[
- ▶ II existe $(m, M) \in \mathbb{R}^2$ tel que :

$$\forall t \in]a, b[m \leqslant f'(t) \leqslant M$$

Alors:

$$m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$

Démonstration.

Inégalité des accroissements finis, v2

I intervalle $f:I\to\mathbb{R}$ telle que :

- ightharpoonup f est dérivable sur I
- ightharpoonup |f'| est bornée par un réel M, *i.e.*,

$$\exists M \in \mathbb{R} \qquad \forall t \in I \qquad |f'(t)| \leqslant M$$

Alors f est M-lipschitzienne sur I, *i.e.*, :

$$\forall (x, x') \in I^2 \qquad |f(x) - f(x')| \leqslant M|x - x'|$$

Définition

Soit M un réel.

On dit que $f:I\to\mathbb{R}$ est M-lipschitzienne si

$$\forall (x, x') \in I^2 \qquad |f(x) - f(x')| \leqslant M|x - x'|$$

On dit que f est lipschitzienne si elle est M-lipschitzienne pour un certain réel M.

Inégalité des accroissements finis, v2

I intervalle $f:I\to\mathbb{R}$ telle que :

- ightharpoonup f est dérivable sur I
- ightharpoonup |f'| est bornée par un réel M.

$$\forall (x, x') \in I^2 \qquad |f(x) - f(x')| \leqslant M|x - x'|$$

$$\underline{\mathsf{D\'{e}monstration}}. \qquad [x', x] \subseteq I$$

I intervalle $f:I\to\mathbb{R}$ telle que :

- ightharpoonup f est dérivable sur I
- $\blacktriangleright |f'|$ est bornée par un réel M.

$$\forall (x, x') \in I^2 \qquad |f(x) - f(x')| \leqslant M|x - x'|$$

$$\underline{\mathsf{D\'{e}monstration}}. \qquad [x', x] \subseteq I$$

Hypothèse :
$$-M \leqslant f' \leqslant M$$

I intervalle $f:I\to\mathbb{R}$ telle que :

- ightharpoonup f est dérivable sur I
- $\blacktriangleright |f'|$ est bornée par un réel M.

$$\forall (x, x') \in I^2 \qquad |f(x) - f(x')| \leqslant M|x - x'|$$

Démonstration.
$$[x', x] \subseteq I$$

Hypothèse :
$$-M \leqslant f' \leqslant M$$

IAF:
$$-M(x - x') \le (f(x) - f(x')) \le M(x - x')$$

Inégalité des accroissements finis, v2

I intervalle $f:I\to\mathbb{R}$ telle que :

- ightharpoonup f est dérivable sur I
- $\blacktriangleright |f'|$ est bornée par un réel M.

$$\forall (x, x') \in I^2 \qquad |f(x) - f(x')| \leqslant M|x - x'|$$

$$\begin{array}{ll} \underline{\mathsf{D\acute{e}monstration}}. & [x',x] \subseteq I \\ \mathsf{IAF}: & -M(x-x') \leqslant (f(x)-f(x')) \leqslant M(x-x') \\ \Longrightarrow & |f(x)-f(x')| \leqslant M|x-x'| \end{array}$$

I intervalle $f:I\to\mathbb{R}$ telle que :

- ightharpoonup f est dérivable sur I
- $\blacktriangleright |f'|$ est bornée par un réel M.

$$\forall (x, x') \in I^2 \qquad |f(x) - f(x')| \leqslant M|x - x'|$$

$$\begin{array}{ll} \underline{\mathsf{D\acute{e}monstration}}. & [x',x] \subseteq I \\ \mathsf{IAF}: & -M(x-x') \leqslant (f(x)-f(x')) \leqslant M(x-x') \\ \Longrightarrow & |f(x)-f(x')| \leqslant M|x-x'| \end{array}$$

Remarque

Pour les fonctions complexes

- × le théorème de Rolle
- × le théorème des accroissements finis
- × la version 1 de l'inégalité des accroissements finis ne sont pas valables, alors que
- la version 2 de l'inégalité des accroissements finis est valable.

⊳ Exercice 4.

a. Démontrer que pour tout $n \in \mathbb{N}^*$:

$$\frac{1}{n+1} \leqslant \ln\left(n+1\right) - \ln n \leqslant \frac{1}{n}$$

b. Soit $(S_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$\forall n \in \mathbb{N}^* \quad S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$$

Démontrer que : $S_n \sim \ln n$

En particulier (S_n) tend vers $+\infty$.

Exemple 6 : suite récurrente

a. Démontrer que l'équation $x^3+x=1$ admet une unique solution α , et que celle-ci est point fixe de $f: x \mapsto \frac{1}{1+x^2}$.

Exemple 6 : suite récurrente

- a. Démontrer que l'équation $x^3+x=1$ admet une unique solution α , et que celle-ci est point fixe de $f: x \mapsto \frac{1}{1+x^2}$.
- b. Démontrer que f est k-lipschitzienne pour un certain $k \in [0,1[$.

Exemple 6 : suite récurrente

- a. Démontrer que l'équation $x^3+x=1$ admet une unique solution α , et que celle-ci est point fixe de $f: x \mapsto \frac{1}{1+x^2}$.
- b. Démontrer que f est k-lipschitzienne pour un certain $k \in [0,1[$.

Soit
$$u_0 = 0$$
 et $\forall n \in \mathbb{N}$ $u_{n+1} = f(u_n)$

c. Démontrer que pour tout $n \in \mathbb{N}$:

$$|u_{n+1} - \alpha| \leqslant k|u_n - \alpha|$$

Exemple 6 : suite récurrente

- a. Démontrer que l'équation $x^3+x=1$ admet une unique solution α , et que celle-ci est point fixe de $f: x \mapsto \frac{1}{1+x^2}$.
- b. Démontrer que f est k-lipschitzienne pour un certain $k \in [0,1[$.

Soit
$$u_0 = 0$$
 et $\forall n \in \mathbb{N}$ $u_{n+1} = f(u_n)$

c. Démontrer que pour tout $n \in \mathbb{N}$:

$$|u_{n+1} - \alpha| \leqslant k|u_n - \alpha|$$

d. En déduire que la suite (u_n) converge vers α .

Chapitre 0. Dérivation

II. Théorèmes

- A. Extremum local
- B. Théorème de Rolle
- C. Accroissements finis
- D. Croissance des fonctions
- E. Prolongement de la dérivée

└II. Théorèmes

└D. Croissance des fonctions

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

- (i) f croissante $\iff f'$ positive
- (ii) f décroissante \iff f' négative
- (iii) f constante \iff f' nulle.

└D. Croissance des fonctions

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

- (i) f croissante $\iff f'$ positive
- (ii) f décroissante \iff f' négative
- (iii) f constante \iff f' nulle.

<u>Démonstration</u>. Juste le *(i)*.

D. Croissance des fonctions

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

(i) f croissante \iff f' positive

<u>Démonstration</u>. Juste le *(i)*.

$$\begin{cases} x < y \Longrightarrow f(x) \leqslant f(y) \\ x > y \Longrightarrow f(x) \geqslant f(y) \end{cases} \implies \frac{f(y) - f(x)}{y - x} \geqslant 0$$

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

(i) f croissante \iff f' positive

<u>Démonstration</u>. Juste le *(i)*.

$$f$$
 croissante : $\forall (x,y) \in I^2$

$$\begin{cases} x < y \Longrightarrow f(x) \leqslant f(y) \\ x > y \Longrightarrow f(x) \geqslant f(y) \end{cases} \implies \frac{f(y) - f(x)}{y - x} \geqslant 0$$

Donc
$$\forall x \in I$$
 $\lim_{y \to x} \frac{f(y) - f(x)}{y - x} \geqslant 0$

└D. Croissance des fonctions

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

(i) f croissante \iff f' positive

<u>Démonstration</u>. Juste le *(i)*.

$$\begin{cases} x < y \Longrightarrow f(x) \leqslant f(y) \\ x > y \Longrightarrow f(x) \geqslant f(y) \end{cases} \implies \frac{f(y) - f(x)}{y - x} \geqslant 0$$

Donc $\forall x \in I$ $f'(x) \geqslant 0$.

Théorème

□ D. Croissance des fonctions

I intervalle $f:I\to\mathbb{R}$ dérivable

(i) f croissante \iff f' positive

<u>Démonstration</u>. Juste le *(i)*.

f' positive.

└D. Croissance des fonctions

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

(i) f croissante \iff f' positive

<u>Démonstration</u>. Juste le *(i)*.

f' positive.

└D. Croissance des fonctions

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

- (i) f croissante \iff f' positive
- (ii) f décroissante \iff f' négative
- (iii) f constante \iff f' nulle.

Remarques

(i) Ce théorème n'est valable que sur un intervalle.

$$\begin{array}{ccc} f: \mathbb{R}^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{x} \end{array}$$

└D. Croissance des fonctions

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

- (i) f croissante \iff f' positive
- (ii) f décroissante \iff f' négative
- (iii) f constante \iff f' nulle.

Remarques

(i) Ce théorème n'est valable que sur un intervalle.

$$g: \mathbb{R}^* \longrightarrow \mathbb{R}$$
$$x \longmapsto \arctan x + \arctan \frac{1}{x}$$

D. Croissance des fonctions

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

- (i) f croissante \iff f' positive
- (ii) f décroissante \iff f' négative
- (iii) f constante \iff f' nulle.

Remarques

(ii) On ne peut pas remplacer «croissante» par «strictement croissante» et «positive» par «strictement positive».

$$f: x \mapsto x^3$$

D. Croissance des fonctions

Corollaire

Avec les hypothèses du théorème précédent :

- (i) Si f' est strictement positive sauf en un nombre fini de points où elle s'annule, alors f est strictement croissante.
- (ii) Si f' est strictement négative sauf en un nombre fini de points où elle s'annule, alors f est strictement décroissante.

-D. Croissance des fonctions

Corollaire

Avec les hypothèses du théorème précédent :

(i) Si f' est strictement positive sauf en un nombre fini de points où elle s'annule, alors f est strictement croissante.

<u>Démonstration</u>. Si f est croissante non strictement alors il existe x < y tels que f(x) = f(y).

Corollaire

Avec les hypothèses du théorème précédent :

(i) Si f' est strictement positive sauf en un nombre fini de points où elle s'annule, alors f est strictement croissante.

<u>Démonstration</u>. Si f est croissante non strictement alors il existe x < y tels que f(x) = f(y).

Alors f est constante sur]x,y[.

Corollaire

Avec les hypothèses du théorème précédent :

(i) Si f' est strictement positive sauf en un nombre fini de points où elle s'annule, alors f est strictement croissante.

<u>Démonstration</u>. Si f est croissante non strictement alors il existe x < y tels que f(x) = f(y).

Alors f est constante sur]x,y[.

Donc f' s'annule en une infinité de points : tous ceux de]x,y[.

D. Croissance des fonctions

Théorème

 $I \text{ intervalle } \qquad f:I\to \mathbb{R} \text{ d\'erivable}$

(iii) f constante \iff f' nulle.

Corollaire du (iii)

 $f, g: I \to \mathbb{R}$ dérivables

Si f' = g' alors

$$\exists K \in \mathbb{R} \quad \forall x \in I \quad f(x) = g(x) + K$$

└D. Croissance des fonctions

Théorème

I intervalle $f:I \to \mathbb{R}$ dérivable

(iii) f constante \iff f' nulle.

Corollaire du (iii)

f, $g:I\to\mathbb{R}$ dérivables

Si f' = g' alors

$$\exists K \in \mathbb{R} \quad \forall x \in I \quad f(x) = g(x) + K$$

<u>Démonstration</u>. Soit h = f - g

Corollaire du (iii)

 $f, g: I \to \mathbb{R}$ dérivables

 $\mathsf{Si}\ f' = g'\ \mathsf{alors}$

$$\exists K \in \mathbb{R} \quad \forall x \in I \quad f(x) = g(x) + K$$

<u>Démonstration</u>. Soit h = f - g

$$h' = f' - g' = 0 \implies h = K \in \mathbb{R}$$

$$\implies f = g + K$$

Chapitre 0. Dérivation

II. Théorèmes

- A. Extremum local
- B. Théorème de Rolle
- C. Accroissements finis
- D. Croissance des fonctions
- E. Prolongement de la dérivée

E. Prolongement de la dérivée

Exemple 7

(i) Dérivabilité de : $f(x) = \sqrt{x} - \arctan \sqrt{x}$

E. Prolongement de la dérivée

Exemple 7

- (i) Dérivabilité de : $f(x) = \sqrt{x} \arctan \sqrt{x}$
- (ii) Dérivabilité de : $g(x) = \arcsin e^{-x}$

Théorème de limite de la dérivée

I intervalle $a \in I$ $f: I \to \mathbb{R}$ fonction telle que :

- ightharpoonup f est continue sur I
- ▶ f est dérivable sur $I \{a\}$
- ▶ f' admet une limite $\ell \in \overline{\mathbb{R}}$ en a.

Alors $x \mapsto \frac{f(x)-f(a)}{x-a}$ admet ℓ pour limite en a.

Théorème de limite de la dérivée

I intervalle $a \in I$ $f: I \to \mathbb{R}$ fonction telle que :

- ightharpoonup f est continue sur I
- ▶ f est dérivable sur $I \{a\}$
- ▶ f' admet une limite $\ell \in \overline{\mathbb{R}}$ en a.

Alors $x \mapsto \frac{f(x) - f(a)}{x - a}$ admet ℓ pour limite en a. En particulier :

- (i) Si ℓ est fini : f est dérivable en a et $f'(a) = \ell$. (Et donc f' est continue en a.)
- (ii) Si ℓ est infini : f n'est pas dérivable en a.

Remarques

(i) Ce théorème montre que f est dérivable en a. Il est souvent préférable de calculer

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

(ii) Dans le deuxième cas la courbe représentative de f admet une tangente verticale au point d'abscisse a.

E. Prolongement de la dérivée

Théorème de limite de la dérivée

I intervalle $a \in I$ $f: I \to \mathbb{R}$ fonction telle que :

- ightharpoonup f est continue sur I
- ▶ f est dérivable sur $I \{a\}$
- ▶ f' admet une limite $\ell \in \overline{\mathbb{R}}$ en a.

Alors $x \mapsto \frac{f(x) - f(a)}{x - a}$ admet ℓ pour limite en a.

Théorème de limite de la dérivée

I intervalle $a \in I$ $f: I \to \mathbb{R}$ fonction telle que :

- ightharpoonup f est continue sur I
- ightharpoonup f est dérivable sur $I \{a\}$
- ▶ f' admet une limite $\ell \in \overline{\mathbb{R}}$ en a.

Alors $x \mapsto \frac{f(x) - f(a)}{x - a}$ admet ℓ pour limite en a.

Démonstration.

Théorème de limite de la dérivée

I intervalle $a \in I$ $f: I \to \mathbb{R}$ fonction telle que :

- ightharpoonup f est continue sur I
- f est dérivable sur $I \{a\}$
- ▶ f' admet une limite $\ell \in \overline{\mathbb{R}}$ en a.

Alors $x \mapsto \frac{f(x)-f(a)}{x-a}$ admet ℓ pour limite en a.

Démonstration.

Chapitre 0. Dérivation

- I. Fonction dérivée
- II. Théorèmes
- III. Dérivées successives
 - A. Définitions
 - B. Calculs et propriétés
- IV. Dérivation des fonctions complexes
- V. Convexité

Dans toute cette partie :

$$n \in \mathbb{N}$$

Chapitre 0. Dérivation

III. Dérivées successives

A. Définitions

B. Calculs et propriétés

Définition

 $f: I \to \mathbb{R}$ dérivable.

f est deux fois dérivable si f' est dérivable.

On note f'' = (f')': dérivée seconde de f

On note également $f^{(0)}$, $f^{(1)}$ et $f^{(2)}$ pour f, f' et f''.

A. Définitions

Définition

 $f: I \to \mathbb{R} \ (n-1)$ fois dérivable

f est n fois dérivable si $f^{(n-1)}$ est dérivable.

On note $f^{(n)}$ la dérivée de $f^{(n-1)}$.

 $f^{(n)}$: dérivée n-ème de f

A. Définitions

Notation

Dérivée n-ème de f :

 $\frac{\mathrm{d}^{\prime} j}{(\mathrm{d} x)}$

Chapitre 0. Dérivation

III. Dérivées successives

└A. Définitions

Définition

f est de classe \mathbb{C}^n si elle est n fois dérivable et si sa dérivée n-ème est continue.

└A. Définitions

Définition

f est de classe \mathbb{C}^n si elle est n fois dérivable et si sa dérivée n-ème est continue.

f est de classe \mathcal{C}^{∞} si elle est n fois dérivable pour tout entier $n \in \mathbb{N}$.

└A. Définitions

Définition

f est de classe \mathbb{C}^n si elle est n fois dérivable et si sa dérivée n-ème est continue.

f est de classe \mathcal{C}^{∞} si elle est n fois dérivable pour tout entier $n \in \mathbb{N}$.

Notations:

$$\mathcal{C}^n(I)$$
 ou $\mathcal{C}^n(I,\mathbb{R})$

$$\mathcal{C}^{\infty}(I)$$
 ou $\mathcal{C}^{\infty}(I,\mathbb{R})$

III. Dérivées successives
A. Définitions

Exemples

(i) f de classe $C^0 \iff f$ continue (Toute fonction est 0 fois dérivable.)

Exemples

- (i) f de classe $C^0 \iff f$ continue (Toute fonction est 0 fois dérivable.)
- (ii) f de classe $\mathcal{C}^1 \iff f$ dérivable de dérivée continue
 - *i.e.*, f est continument dérivable.

Remarques

(i) Si f est n fois dérivable alors f, f', ..., $f^{(n-1)}$ sont dérivables et continues.

└A. Définitions

Remarques

- (i) Si f est n fois dérivable alors f, f', ..., $f^{(n-1)}$ sont dérivables et continues.
- (ii) f est de classe C^n $(n \geqslant 1)$ $\iff f$ est dérivable et f' est de classe C^{n-1}

└A. Définitions

Remarques

- (i) Si f est n fois dérivable alors f, f', ..., $f^{(n-1)}$ sont dérivables et continues.
- (ii) f est de classe C^n $(n \geqslant 1)$ $\iff f$ est dérivable et f' est de classe C^{n-1}
- (iii) Inclusions des C^n

Soit
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \frac{\sin x^2}{x} & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

- a. Démontrer que f est continue.
- b. Démontrer que f est dérivable.
- c. f est-elle de classe C^1 ?

> Exercice 6.

Déterminer la classe de : $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ $x \longmapsto x^{\frac{3}{2}}$

$$x \longmapsto x$$

Chapitre 0. Dérivation

III. Dérivées successives

A. Définitions

B. Calculs et propriétés

B. Calculs et propriétés

Exemple 8

(i)
$$f(x) = x^n$$
 avec $n \in \mathbb{N}$

Exemple 8

(i)
$$f(x) = x^n$$
 avec $n \in \mathbb{N}$

(ii)
$$f(x) = (ax + b)^n$$
 avec $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}$

Exemple 8

(i)
$$f(x) = x^n$$
 avec $n \in \mathbb{N}$

(ii)
$$f(x) = (ax + b)^n$$
 avec $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}$

(iii) Fonction exponentielle

Exemple 8

(i)
$$f(x) = x^n$$
 avec $n \in \mathbb{N}$

(ii)
$$f(x) = (ax + b)^n$$
 avec $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}$

- (iii) Fonction exponentielle
- (iv) Fonctions cosinus et sinus

Exemple 8

- (i) $f(x) = x^n$ avec $n \in \mathbb{N}$
- (ii) $f(x) = (ax + b)^n$ avec $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}$
- (iii) Fonction exponentielle
- (iv) Fonctions cosinus et sinus

Démontrer que la fonction \ln est de classe \mathcal{C}^{∞} et donner ses dérivées successives.

Remarque

(i) La fonction \ln est de classe \mathcal{C}^{∞} . La fonction $x \mapsto \frac{1}{x}$ est donc de classe \mathcal{C}^{∞} , car c'est sa dérivée.

Remarque

- (i) La fonction \ln est de classe \mathcal{C}^{∞} . La fonction $x \mapsto \frac{1}{x}$ est donc de classe \mathcal{C}^{∞} , car c'est sa dérivée.
- (ii) Toutes les fonctions usuelles sont de classe C^{∞} sur leur ensemble de dérivabilité.

Remarque

- (i) La fonction \ln est de classe \mathcal{C}^{∞} . La fonction $x \mapsto \frac{1}{x}$ est donc de classe \mathcal{C}^{∞} , car c'est sa dérivée.
- (ii) Toutes les fonctions usuelles sont de classe C^{∞} sur leur ensemble de dérivabilité.

Par exemple:

- $ightharpoonup x\mapsto \sqrt{x}$ est de classe \mathcal{C}^∞ sur \mathbb{R}_+^*
- ightharpoonup arccos, arcsin sont de classe \mathcal{C}^{∞} sur]-1,1[.

$$f$$
, g de classe \mathcal{C}^n $\lambda \in \mathbb{R}$

- (i) f + g est de classe C^n
- (ii) λf est de classe \mathcal{C}^n

$$f$$
, g de classe \mathcal{C}^n $\lambda \in \mathbb{R}$

- (i) f + g est de classe C^n
- (ii) λf est de classe \mathcal{C}^n
- (iii) fg est de classe C^n

$$f$$
, g de classe \mathcal{C}^n $\lambda \in \mathbb{R}$

- (i) f + g est de classe C^n
- (ii) λf est de classe \mathcal{C}^n
- (iii) fg est de classe C^n
- (iv) $f \circ g$ est de classe \mathcal{C}^n (si f et g composables)

$$f$$
, g de classe \mathcal{C}^n $\lambda \in \mathbb{R}$

- (i) f + g est de classe C^n
- (ii) λf est de classe \mathcal{C}^n
- (iii) fg est de classe C^n
- (iv) $f \circ g$ est de classe \mathcal{C}^n (si f et g composables)
- (v) Si f est bijective alors f^{-1} est de classe C^n sur son ensemble de dérivabilité.

Propositions

$$f$$
, g de classe \mathcal{C}^n $\lambda \in \mathbb{R}$

- (i) f + g est de classe C^n
- (ii) λf est de classe \mathcal{C}^n
- (iii) fg est de classe C^n
- (iv) $f \circ g$ est de classe \mathcal{C}^n (si f et g composables)
- (v) Si f est bijective alors f^{-1} est de classe C^n sur son ensemble de dérivabilité.

Tout ceci est valable pour $n = \infty$.

Remarque

De plus:

(i)
$$(f+g)^{(n)} = f^{(n)} + g^{(n)}$$

(ii)
$$(\lambda f)^{(n)} = \lambda f^{(n)}$$

<u>Démonstration</u>. Par récurrence sur $n \in \mathbb{N}$.

(i) f+g est de classe \mathcal{C}^n et $(f+g)^{(n)}=f^{(n)}+g^{(n)}$ Initialisation. Si f et g sont continues alors f+g est continue et :

$$(f+g)^{(0)} = f + g = f^{(0)} + g^{(0)}$$

Démonstration. Par récurrence sur $n \in \mathbb{N}$.

(i)
$$f + g$$
 est de classe C^n et $(f+g)^{(n)} = f^{(n)} + g^{(n)}$

Hérédité. Soit f et g de classe \mathcal{C}^{n+1}

Alors f' et g' sont de classe C^n .

Donc d'après l'HR leur somme est de classe \mathcal{C}^n et :

$$(f'+g')^{(n)} = f'^{(n)} + g'^{(n)}$$

Comme (f' + g') = (f + g)' alors

$$(f+g)'^{(n)} = f'^{(n)} + g'^{(n)}$$

puis:
$$(f+g)^{(n+1)} = f^{(n+1)} + g^{(n+1)}$$

Démonstration.

(i)
$$f + g$$
 est de classe C^{∞}

Si f et g sont de classe \mathcal{C}^{∞} alors elles sont de classe \mathcal{C}^n pour tout $n \in \mathbb{N}$.

Donc (f+g) est de classe C^n pour tout $n \in \mathbb{N}$.

Ainsi (f+g) est de classe \mathcal{C}^{∞} .

Démonstration.

(i)
$$f + g$$
 est de classe C^{∞}

Si f et g sont de classe \mathcal{C}^{∞} alors elles sont de classe \mathcal{C}^n pour tout $n \in \mathbb{N}$.

Donc (f+g) est de classe \mathcal{C}^n pour tout $n \in \mathbb{N}$.

Ainsi
$$(f+g)$$
 est de classe \mathcal{C}^{∞} .

(ii) Idem.

Démonstration.

(i)
$$f + g$$
 est de classe C^{∞}

Si f et g sont de classe \mathcal{C}^{∞} alors elles sont de classe \mathcal{C}^n pour tout $n \in \mathbb{N}$.

Donc (f+g) est de classe \mathcal{C}^n pour tout $n \in \mathbb{N}$.

Ainsi
$$(f+g)$$
 est de classe \mathcal{C}^{∞} .

(ii) Idem.

(iii) Voir la formule de Leibniz ci-dessous.

Chapitre 0. Dérivation

LIII. Dérivées successives

☐B. Calculs et propriétés

 $\underline{\mathsf{D\'emonstration}}. \ \mathsf{On} \ \mathsf{suppose} \ \mathsf{que} \ f \circ g \ \mathsf{est} \ \mathsf{d\'efinie}.$

(iv) Si f et g sont de classe \mathcal{C}^n alors $f \circ g$ est de classe \mathcal{C}^n

 $\underline{\mathsf{D\'emonstration}}. \ \mathsf{On} \ \mathsf{suppose} \ \mathsf{que} \ f \circ g \ \mathsf{est} \ \mathsf{d\'efinie}.$

(iv) Si f et g sont de classe \mathcal{C}^n alors $f \circ g$ est de classe \mathcal{C}^n

<u>Démonstration</u>. Soit $f: I \to J$ bijective.

(v) Si f est de classe C^n alors f^{-1} est de classe C^n sur son ensemble de dérivabilité.

Initialisation. Si f est bijective continue alors sa réciproque est continue.

<u>Démonstration</u>. Soit $f: I \to J$ bijective.

(v) Si f est de classe C^n alors f^{-1} est de classe C^n sur son ensemble de dérivabilité.

Hérédité. Soit f bijective de classe C^{n+1} . Alors f est dérivable donc par théorème f^{-1} est dérivable sur J' et :

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

<u>Démonstration</u>. Soit $f: I \to J$ bijective.

(v) Si f est de classe C^n alors f^{-1} est de classe C^n sur son ensemble de dérivabilité.

Hérédité.
$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Par hypothèse de récurrence f^{-1} est de classe C^n . f' est de classe C^n .

Par composition $f' \circ f^{-1}$ est de classe \mathcal{C}^n puis $\frac{1}{f' \circ f^{-1}}$ est de classe \mathcal{C}^n (composition avec $x \mapsto \frac{1}{x}$).

 $(f^{-1})'$ est de classe \mathcal{C}^n , donc f^{-1} est de classe \mathcal{C}^{n+1} .

<u>Démonstration</u>. Soit $f: I \to J$ bijective.

(v) Si f est de classe C^n alors f^{-1} est de classe C^n sur son ensemble de dérivabilité.

Conclusion. Par récurrence, cette propriété est vraie pour tout $n \in \mathbb{N}$.

Théorème - Formule de Leibniz

Soit f, $g:I\to\mathbb{R}$ dérivables n fois.

Alors fg est dérivable n fois et :

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

Théorème - Formule de Leibniz

Soit f, $g:I\to\mathbb{R}$ dérivables n fois.

Alors fg est dérivable n fois et :

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

Exemple

$$\begin{split} (fg)^{(0)} &= f^{(0)}g^{(0)} \\ (fg)^{(1)} &= f^{(1)}g^{(0)} + f^{(0)}g^{(1)} \\ (fg)^{(2)} &= f^{(2)}g^{(0)} + 2f^{(1)}g^{(1)} + f^{(0)}g^{(2)} \\ (fg)^{(3)} &= f^{(3)}g^{(0)} + 3f^{(2)}g^{(1)} + 3f^{(1)}g^{(2)} + f^{(0)}g^{(3)} \end{split}$$

Théorème - Formule de Leibniz

Soit $f, g: I \to \mathbb{R}$ dérivables n fois.

Alors fg est dérivable n fois et :

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

Exemple

$$\begin{split} (fg)^{(0)} &= fg \\ (fg)^{(1)} &= f'g + fg' \\ (fg)^{(2)} &= f''g + 2f'g' + fg'' \\ (fg)^{(3)} &= f'''g + 3f''g' + 3f'g'' + fg''' \end{split}$$

Démonstration. Par récurrence sur n.

Initialisation. Si f et g sont 0 fois dérivables alors fg est 0 fois dérivable et :

$$(fg)^{(0)} = \sum_{k=0}^{0} {0 \choose k} f^{(k)} g^{(0-k)} = f^{(0)} g^{(0)} = fg$$

Démonstration. Par récurrence sur n.

Hérédité. Soit f, g dérivables n+1 fois.

Alors fg est dérivable n fois et :

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

f et g sont n+1 fois dérivables donc $f^{(k)}$ et $g^{(n-k)}$ pour $k=0\ldots n$ sont dérivables.

Par produit et somme $(fg)^{(n)}$ est dérivable.

Démonstration. Par récurrence sur n.

Hérédité.

$$(fg)^{(n+1)} = ((fg)^{(n)})'$$

$$= \sum_{k=0}^{n} {n \choose k} (f^{(k+1)}g^{(n-k)} + f^{(k)}g^{(n-k+1)})$$

$$= \sum_{k=1}^{n+1} {n \choose k-1} f^{(k)}g^{(n-k+1)} + \sum_{k=0}^{n} {n \choose k} f^{(k)}g^{(n-k+1)}$$

Démonstration. Par récurrence sur n.

Hérédité.

$$(fg)^{(n+1)} = ((fg)^{(n)})'$$

$$= \sum_{k=0}^{n} {n \choose k} (f^{(k+1)}g^{(n-k)} + f^{(k)}g^{(n-k+1)})$$

$$= \sum_{k=1}^{n+1} {n \choose k-1} f^{(k)}g^{(n-k+1)} + \sum_{k=0}^{n} {n \choose k} f^{(k)}g^{(n-k+1)}$$

$$= \sum_{k=0}^{n+1} {n+1 \choose k} f^{(k)}g^{(n+1-k)}$$

Démonstration. Par récurrence sur n.

Conclusion. Le théorème est démontré pour tout entier $n \in \mathbb{N}$.

Théorème - Formule de Leibniz

Soit f, $g:I\to\mathbb{R}$ dérivables n fois.

Alors fg est dérivable n fois et :

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

Exemple 9

Calculer la dérivée 10-ème de :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x^2 \cos x$$

Théorème - Formule de Leibniz

Soit f, $g:I\to\mathbb{R}$ dérivables n fois.

Alors fg est dérivable n fois et :

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

⊳ Exercice 8.

Calculer les dérivées n-èmes de :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x^3 e^x$$

Chapitre 0. Dérivation

- I. Fonction dérivée
- II. Théorèmes
- III. Dérivées successives
- IV. Dérivation des fonctions complexes
 - A. Définition
 - B. Théorème
- V. Convexité

Chapitre 0. Dérivation

IV. Dérivation des fonctions complexes

A. Définition

B. Théorème

A. Définition

I : intervalle de $\mathbb R$

$$f:I\to\mathbb{C}$$

$$f: I \to \mathbb{C}$$
 $t_0 \in I$

f est dérivable en t_0 si

$$t \mapsto \frac{f(t) - f(t_0)}{t - t_0}$$

admet une limite finie lorsque t tend vers t_0 .

└A. Définition

Définitions

$$f: I \to \mathbb{C}$$
 $t_0 \in I$

f est dérivable en t_0 si

$$t \mapsto \frac{f(t) - f(t_0)}{t - t_0}$$

admet une limite finie lorsque t tend vers t_0 .

On note $f'(t_0)$ cette limite, et on l'appelle dérivée de f en t_0 .

LA. Définition

Définitions

$$f:I\to\mathbb{C}$$

On dit que f est dérivable sur I si elle est dérivable en tout point de I.

La fonction

$$f': I \longrightarrow \mathbb{C}$$

 $t \longmapsto f'(t)$

est appelée fonction dérivée de f sur I.

└A. Définition

Proposition

Si $f:I\to\mathbb{C}$ est dérivable alors $\bar{f}:I\to\mathbb{C}$ est dérivable et :

$$\left(\bar{f}\right)' = \overline{f'}$$

Proposition

Si $f:I\to\mathbb{C}$ est dérivable alors $\bar{f}:I\to\mathbb{C}$ est dérivable et :

$$\left(\bar{f}\right)' = \overline{f'}$$

Démonstration.

$$\lim_{t \to t_0} \frac{\bar{f}(t) - \bar{f}(t_0)}{t - t_0} = \lim_{t \to t_0} \overline{\left(\frac{f(t) - f(t_0)}{t - t_0}\right)}$$

LA. Définition

Théorème

$$f:I \to \mathbb{C}$$
 est dérivable en t

$$\iff \frac{\operatorname{Re} f: I \to \mathbb{R}}{\operatorname{Im} f: I \to \mathbb{R}}$$
 sont dérivables en t

De plus :

$$\forall t \in I$$
 $f'(t) = (\operatorname{Re} f)'(t) + i(\operatorname{Im} f)'(t)$

<u>Démonstration</u>. On note pour tout $t \in I$:

$$f(t) = x(t) + iy(t)$$

Alors

$$\frac{f(t+h) - f(t)}{h} = \frac{x(t+h) - x(t)}{h} + i\frac{y(t+h) - y(t)}{h}$$

et

$$x(t) = \frac{f(t) + f(t)}{2}$$
 $y(t) = \frac{f(t) - f(t)}{2i}$

LA. Définition

Théorème

$$f:I \to \mathbb{C} \quad \text{est d\'erivable en } t$$

$$\iff \frac{\operatorname{Re} f: I \to \mathbb{R}}{\operatorname{Im} f: I \to \mathbb{R}}$$
 sont dérivables en t

De plus :

$$\forall t \in I$$
 $f'(t) = (\operatorname{Re} f)'(t) + i(\operatorname{Im} f)'(t)$

Exemple 10

Dérivabilité de
$$f: \mathbb{R} \longrightarrow \mathbb{C}$$

$$t \longmapsto e^{it}$$

LIV. Dérivation des fonctions complexes

LA. Définition

Remarque

 $f:I\to\mathbb{C}$ peut être représentée par sa trajectoire dans le plan complexe.

 $f:I\to\mathbb{C}$ peut être représentée par sa trajectoire dans le plan complexe.

Alors f'(t) est l'affixe du vecteur vitesse de f au point d'affixe f(t). Ce vecteur dirige la tangente à la trajectoire en ce point.

Exemple 10 (suite)

Représentation de $f: \mathbb{R} \longrightarrow \mathbb{C}$ $t \longmapsto e^{it}$

On étend aux fonctions complexes :

- les dérivées à gauche et à droite
- les opérations de somme, produit et quotient
- la composition
- ightharpoonup les classes \mathcal{C}^n et \mathcal{C}^{∞} .

On étend aux fonctions complexes :

▶ la composition.

Proposition

Soit $u:I\to\mathbb{R}$ et $f:J\to\mathbb{C}$ deux fonctions telles que $u(I)\subseteq J$.

Si f et u sont dérivables alors $f\circ u$ est dérivable, de dérivée :

$$(f \circ u)' = u' \cdot f' \circ u$$

Chapitre 0. Dérivation

IV. Dérivation des fonctions complexes

A. Définition

B. Théorème

- (i) Comme C n'est pas muni de relation d'ordre, les fonctions complexes ne présentent pas d'extremum.
- (ii) Le théorème de Rolle, le théorème des accroissements finis ne sont plus vérifiés.

└B. Théorème

Exemple 10 (suite)

La fonction

$$f: \mathbb{R} \longrightarrow \mathbb{C}$$
$$t \longmapsto e^{it}$$

contredit le théorème de Rolle.

LIV. Dérivation des fonctions complexes

└B. Théorème

Théorème - Inégalité des accroissements finis

- $f:[a,b]\to\mathbb{C}$ telle que
 - ightharpoonup f est continue sur [a,b]
 - ightharpoonup f est dérivable sur]a,b[
 - ightharpoonup il existe un réel M tel que :

$$\forall t \in]a, b[|f'(t)| \leq M$$

Alors:

$$|f(b) - f(a)| \leqslant M|b - a|$$

IV. Dérivation des fonctions complexes

└B. Théorème

Théorème - Inégalité des accroissements finis

$$f:[a,b]\to\mathbb{C}$$
 telle que

- ightharpoonup f est continue sur [a,b]
- ightharpoonup f est dérivable sur]a,b[
- ightharpoonup il existe un réel M tel que :

$$\forall t \in]a, b[|f'(t)| \leq M$$

Alors:

$$|f(b) - f(a)| \le M|b - a|$$

Remarque

On peut démontrer que f est M-lipschitzienne.

└B. Théorème

Remarque

Par contre, il est faux en général que : Si il existe un réel m tel que

$$\forall t \in]a, b[m \leqslant |f'(t)|$$

Alors:

$$m|b-a| \le |f(b) - f(a)|$$

Démonstration.

$$\frac{f(b) - f(a)}{b - a} = re^{i\theta}$$

Soit
$$g: [a,b] \longrightarrow \mathbb{C}$$

$$t \longmapsto f(t)e^{-i\theta}$$

Alors
$$g'(t) = f'(t)e^{-i\theta}$$
 donc $|g'(t)| = |f'(t)|$

Soit
$$g(t) = x(t) + iy(t)$$
. Alors

$$|x'(t)| \leqslant |g'(t)| = |f'(t)| \leqslant M$$

Démonstration.

$$|x'(t)| \leqslant M$$

Par l'IAF:

$$|x(b) - x(a)| \leqslant M|b - a|$$

Or

$$r = \frac{g(b) - g(a)}{b - a} = \frac{x(b) - x(a)}{b - a} + i\frac{y(b) - y(a)}{b - a}$$

Comme r est réel alors

$$\frac{y(b) - y(a)}{b - a} = 0$$

Démonstration.

Donc

$$\left| \frac{x(b) - x(a)}{b - a} \right| = \left| \frac{g(b) - g(a)}{b - a} \right| = r = \left| \frac{f(b) - f(a)}{b - a} \right|$$

Ceci démontre que :

$$|f(b) - f(a)| \leqslant M|b - a| \qquad \Box$$

Chapitre 0. Dérivation

- I. Fonction dérivée
- II. Théorèmes
- III. Dérivées successives
- IV. Dérivation des fonctions complexes

V. Convexité

- A. Définition
- B. Croissance des pentes
- C. Fonctions convexes dérivables

Chapitre 0. Dérivation

V. Convexité

- A. Définition
- B. Croissance des pentes
- C. Fonctions convexes dérivables

Lemme

Soit a et b deux réels avec $a \leqslant b$. Alors :

$$[a,b] = \{(1-\lambda)a + \lambda b \mid \lambda \in [0,1]\}$$

Lemme

Soit a et b deux réels avec $a \leq b$. Alors :

$$[a,b] = \{(1-\lambda)a + \lambda b \mid \lambda \in [0,1]\}$$

<u>Démonstration</u>. Laissée en exercice.

De plus : si
$$c = (1 - \lambda)a + \lambda b$$
 alors : $\lambda = \frac{c - a}{b - a}$

Une fonction $f: I \to \mathbb{R}$ est convexe si :

$$\forall (x,y) \in I^2 \qquad \forall \lambda \in [0,1]$$
$$f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$$

Une fonction $f:I\to\mathbb{R}$ est convexe si :

$$\forall (x,y) \in I^2 \qquad \forall \lambda \in [0,1]$$
$$f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$$

Exemples

Les fonctions $x \mapsto x$, $x \mapsto |x|$, $x \mapsto x^2$, $x \mapsto e^x$, sont convexes sur \mathbb{R} .

Une fonction $f:I\to\mathbb{R}$ est convexe si :

$$\forall (x,y) \in I^2 \qquad \forall \lambda \in [0,1]$$
$$f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$$

Exemples

Les fonctions $x \mapsto x$, $x \mapsto |x|$, $x \mapsto x^2$, $x \mapsto e^x$, sont convexes sur \mathbb{R} .

La fonction $x \mapsto x^3$ ne l'est pas.

Une fonction $f:I\to\mathbb{R}$ est convexe si :

$$\forall (x,y) \in I^2 \qquad \forall \lambda \in [0,1]$$
$$f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$$

> Exercice.

Démontrer que la fonction $x \mapsto x^2$ est convexe.

Démontrer que la fonction $\mathbb{R}_+^* \longrightarrow \mathbb{R}$ est convexe.

$$x \longmapsto \frac{1}{x}$$

 $f:I\to\mathbb{R}$ est concave si -f est convexe.

 $f:I\to\mathbb{R}$ est concave si -f est convexe.

Toute corde est en-dessous de la courbe.

 $f:I\to\mathbb{R}$ est concave si -f est convexe.

Toute corde est en-dessous de la courbe.

Exemple

La fonction $x \mapsto \ln x$, définie sur \mathbb{R}_+^* , est concave.

Proposition - Inégalité de Jensen

 $f:I\to\mathbb{R}$ est convexe ssi :

- $ightharpoonup \forall (x_1,\ldots,x_n) \in I^n$
- lacksquare $\forall (\lambda_1,\ldots,\lambda_n)\in (\mathbb{R}_+)^n$ tel que $\sum_{i=1}^n\lambda_i=1$:

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i)$$

Lemme

Soit:

- $ightharpoonup (x_1,\ldots,x_n) \in I^n$
- \blacktriangleright $(\lambda_1,\ldots,\lambda_n)\in(\mathbb{R}_+)^n$ tel que $\sum_{i=1}^n\lambda_i=1$.

Alors $\sum_{i=1}^{n} \lambda_i x_i$ appartient à I.

Démonstration du lemme.

Soit
$$a = \text{Min} \{x_i \mid 1 \leqslant i \leqslant n\}$$

 $b = \text{Max} \{x_i \mid 1 \leqslant i \leqslant n\}$

Soit
$$a = \text{Min} \{x_i \mid 1 \leqslant i \leqslant n\}$$

 $b = \text{Max} \{x_i \mid 1 \leqslant i \leqslant n\}$

$$\forall i = 1, \dots, n$$
 $a \leqslant x_i \leqslant b$

Soit
$$a = \text{Min} \{x_i \mid 1 \leqslant i \leqslant n\}$$

 $b = \text{Max} \{x_i \mid 1 \leqslant i \leqslant n\}$

$$\forall i = 1, \dots, n$$
 $a \leqslant x_i \leqslant b$
 $\forall i = 1, \dots, n$ $\lambda_i a \leqslant \lambda_i x_i \leqslant \lambda_i b$

Soit
$$a = \text{Min} \{x_i \mid 1 \le i \le n\}$$

 $b = \text{Max} \{x_i \mid 1 \le i \le n\}$

$$\forall i = 1, \dots, n \qquad a \leqslant x_i \leqslant b$$

$$\forall i = 1, \dots, n \qquad \lambda_i a \leqslant \lambda_i x_i \leqslant \lambda_i b$$

$$\Longrightarrow \qquad \sum_{i=1}^n \lambda_i a \leqslant \sum_{i=1}^n \lambda_i x_i \leqslant \sum_{i=1}^n \lambda_i b$$

Soit
$$a = \text{Min} \{x_i \mid 1 \leqslant i \leqslant n\}$$

 $b = \text{Max} \{x_i \mid 1 \leqslant i \leqslant n\}$

$$\forall i = 1, \dots, n \qquad a \leqslant x_i \leqslant b$$

$$\forall i = 1, \dots, n \qquad \lambda_i a \leqslant \lambda_i x_i \leqslant \lambda_i b$$

$$\Longrightarrow \qquad \sum_{i=1}^n \lambda_i a \leqslant \sum_{i=1}^n \lambda_i x_i \leqslant \sum_{i=1}^n \lambda_i b$$

$$a \leqslant \sum_{i=1}^n \lambda_i x_i \leqslant b$$

Soit
$$a = \text{Min} \{x_i \mid 1 \leqslant i \leqslant n\}$$
 $\in I$
 $b = \text{Max} \{x_i \mid 1 \leqslant i \leqslant n\}$ $\in I$

$$\forall i = 1, \dots, n \qquad a \leqslant x_i \leqslant b$$

$$\forall i = 1, \dots, n \qquad \lambda_i a \leqslant \lambda_i x_i \leqslant \lambda_i b$$

$$\Longrightarrow \qquad \sum_{i=1}^n \lambda_i a \leqslant \sum_{i=1}^n \lambda_i x_i \leqslant \sum_{i=1}^n \lambda_i b$$

$$a \leqslant \sum_{i=1}^n \lambda_i x_i \leqslant b$$

 $\forall i = 1, \ldots, n$

Soit
$$a = \text{Min} \{x_i \mid 1 \le i \le n\}$$
 $\in I$
 $b = \text{Max} \{x_i \mid 1 \le i \le n\}$ $\in I$

Alors:

$$\forall i = 1, \dots, n \qquad \lambda_i a \leqslant \lambda_i x_i \leqslant \lambda_i b$$

$$\Longrightarrow \qquad \sum_{i=1}^n \lambda_i a \leqslant \sum_{i=1}^n \lambda_i x_i \leqslant \sum_{i=1}^n \lambda_i b$$

 $a \leq x_i \leq b$

 $a \leqslant \sum_{i=1}^{n} \lambda_i x_i \leqslant b$

I est un intervalle donc $\sum_{i=1}^{n} \lambda_i x_i \in I$.

Proposition - Inégalité de Jensen

 $f: I \to \mathbb{R}$ est convexe ssi :

- $ightharpoonup \forall (x_1,\ldots,x_n) \in I^n$
- lacksquare $\forall (\lambda_1,\ldots,\lambda_n)\in (\mathbb{R}_+)^n$ tel que $\sum_{i=1}^n\lambda_i=1$:

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i)$$

Démonstration.

Si n=1, alors $\lambda_1=1$ donc :

$$f(\lambda_1 x_1) \leqslant \lambda_1 f(x_1)$$

Proposition - Inégalité de Jensen

 $f: I \to \mathbb{R}$ est convexe ssi :

- $ightharpoonup \forall (x_1,\ldots,x_n) \in I^n$
- $ightharpoonup orall (\lambda_1,\ldots,\lambda_n) \in (\mathbb{R}_+)^n$ tel que $\sum_{i=1}^n \lambda_i = 1$:

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i)$$

Démonstration.

Si
$$n=2$$
, alors $\lambda_1=1-\lambda_2$ donc :

$$f(\lambda_1 x_1 + \lambda_2 x_2) \leqslant \lambda_1 f(x_1) + \lambda_2 f(x_2)$$

Démonstration. Par récurrence sur n.

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i)$$

Initialisation. La propriété est vraie pour n=1.

<u>Démonstration</u>. Par récurrence sur n.

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i)$$

Hérédité. Supposons la propriété vraie pour $n \in \mathbb{N}^*$.

Soit
$$(x_1, \ldots, x_{n+1}) \in I^{n+1}$$
 des éléments de I ,

$$(\lambda_1,\ldots,\lambda_{n+1})\in (\mathbb{R}_+)^{n+1}$$
 tel que $\sum\limits_{i=1}^{n+1}\lambda_i=1$.

Soit
$$\lambda = \lambda_1 + \cdots + \lambda_n = 1 - \lambda_{n+1}$$
.

Si $\lambda = 0$ la propriété est vraie.

Démonstration.

Hérédité. Si $\lambda \neq 0$ on pose $y = \frac{\lambda_1}{\lambda} x_1 + \dots + \frac{\lambda_n}{\lambda} x_n$ Par hypothèse de récurrence :

$$f(y) \leqslant \sum_{i=1}^{n} \frac{\lambda_i}{\lambda} f(x_i)$$

Par convexité :

$$f((1-\lambda)x_{n+1} + \lambda y) \leqslant (1-\lambda)f(x_{n+1}) + \lambda f(y)$$

Donc:

$$f(\lambda_1 x_1 + \dots + \lambda_n x_n + \lambda_{n+1} x_{n+1})$$

$$\leqslant \lambda_1 f(x_1) + \dots + \lambda_n f(x_n) + \lambda_{n+1} f(x_{n+1})$$

La propriété est vraie au rang n+1.

Démonstration.

Conclusion. Par récurrence la propriété est vraie pour tout $n \in \mathbb{N}^*$.

Proposition - Inégalité de Jensen

 $f:I\to\mathbb{R}$ est convexe ssi :

- $\blacktriangleright \forall (x_1,\ldots,x_n) \in I^n$
- $lackbrack orall (\lambda_1,\ldots,\lambda_n) \in (\mathbb{R}_+)^n$ tel que $\sum_{i=1}^n \lambda_i = 1$:

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i)$$

⊳ Exercice 9.

Soit x_1, \ldots, x_n des réels strictement positifs.

Démontrer que :
$$\sqrt[n]{\prod_{i=1}^n x_i} \leqslant \frac{1}{n} \sum_{i=1}^n x_i$$

Chapitre 0. Dérivation

V. Convexité

- A. Définition
- B. Croissance des pentes
- C. Fonctions convexes dérivables

Lemme

Soit $f:I\to\mathbb{R}$ convexe et $(x,y,z)\in I^3$.

Si x < y < z alors :

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}$$

Lemme

Soit $f: I \to \mathbb{R}$ convexe et $(x, y, z) \in I^3$.

Si x < y < z alors :

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}$$

Démonstration.

Lemme

Soit $f: I \to \mathbb{R}$ convexe et $(x, y, z) \in I^3$.

Si x < y < z alors :

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}$$

Démonstration.

B. Croissance des pentes

Théorème

 $f:I\to\mathbb{R}$ est convexe ssi pour tout $a\in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

−B. Croissance des pentes

Théorème

 $f:I\to\mathbb{R}$ est convexe ssi pour tout $a\in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

<u>Démonstration</u>. Supposons que f est convexe.

 $f:I \to \mathbb{R}$ est convexe ssi pour tout $a \in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

 $\underline{\mathsf{D}}\underline{\mathsf{e}}$ monstration. Supposons que f est convexe.

Cas 1 :
$$a < x < y$$

$$\frac{f(x) - f(a)}{x - a} \leqslant \frac{f(y) - f(a)}{y - a} \leqslant \frac{f(y) - f(x)}{y - x}$$

 $f:I \to \mathbb{R}$ est convexe ssi pour tout $a \in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

 $\underline{\mathsf{D}}\underline{\mathsf{e}}$ monstration. Supposons que f est convexe.

$$\underline{\mathsf{Cas}\; 1:}\; a < x < y$$

$$\frac{f(x) - f(a)}{x - a} \leqslant \frac{f(y) - f(a)}{y - a} \leqslant \frac{f(y) - f(x)}{y - x}$$

☐B. Croissance des pentes

Théorème

 $f:I \to \mathbb{R}$ est convexe ssi pour tout $a \in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

<u>Démonstration</u>. Supposons que f est convexe.

$$\underline{\mathsf{Cas}\; 2:}\; x < a < y$$

$$\frac{f(a) - f(x)}{a - x} \leqslant \frac{f(y) - f(x)}{y - x} \leqslant \frac{f(y) - f(a)}{y - a}$$

 $f:I\to\mathbb{R}$ est convexe ssi pour tout $a\in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

<u>Démonstration</u>. Supposons que f est convexe.

$$\underline{\mathsf{Cas}\; 2:}\; x < a < y$$

$$\frac{f(a) - f(x)}{a - x} \leqslant \frac{f(y) - f(x)}{y - x} \leqslant \frac{f(y) - f(a)}{y - a}$$

 $f:I \to \mathbb{R}$ est convexe ssi pour tout $a \in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

<u>Démonstration</u>. Supposons que f est convexe.

Cas 3 :
$$x < y < a$$

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(a) - f(x)}{a - x} \leqslant \frac{f(a) - f(y)}{a - y}$$

 $f:I\to\mathbb{R}$ est convexe ssi pour tout $a\in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

<u>Démonstration</u>. Supposons que f est convexe.

Soit $a \in I$, $x, y \in I \setminus \{a\}$.

Cas 3: x < y < a

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(a) - f(x)}{a - x} \leqslant \frac{f(a) - f(y)}{a - y}$$

 $f:I\to\mathbb{R}$ est convexe ssi pour tout $a\in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

<u>Démonstration</u>. Supposons que f est convexe. Soit $a \in I$, $x, y \in I \setminus \{a\}$.

Dans tous les cas $p_a(x) \leq p_a(y)$, donc p_a est croissante.

☐B. Croissance des pentes

<u>Démonstration</u>. Supposons que la fonction p_a est croissante pour tout $a \in I$.

Soit
$$(x,y) \in I^2$$
, $\lambda \in [0,1]$.

Soit
$$z=(1-\lambda)x+\lambda y.$$
 Démontrons que :

$$f(z) \le (1 - \lambda)f(x) + \lambda f(y)$$

<u>Démonstration</u>. Supposons que la fonction p_a est croissante pour tout $a \in I$.

Soit
$$(x,y) \in I^2$$
, $\lambda \in [0,1]$.

Soit $z=(1-\lambda)x+\lambda y.$ Démontrons que :

$$f(z) \le (1 - \lambda)f(x) + \lambda f(y)$$

Évident si
$$x = y$$

$$\lambda = 0$$

$$\lambda = 1$$

De plus on peut supposer que x < y.

<u>Démonstration</u>. Supposons que la fonction p_a est croissante pour tout $a \in I$.

Soit
$$(x,y) \in I^2$$
, $\lambda \in [0,1]$.

Soit
$$z = (1 - \lambda)x + \lambda y$$
.

Si
$$x < y$$
 et $\lambda \in]0,1[$ alors $x < z < y.$

La fonction p_x est croissante donc :

$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(x)}{y - x}$$

Or
$$\lambda = \frac{z-x}{y-x}$$
 et $z-x>0$ donc :

$$f(z) \le (1 - \lambda)f(x) + \lambda f(y)$$

−B. Croissance des pentes

Théorème

 $f:I \to \mathbb{R}$ est convexe ssi pour tout $a \in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{f(x) - f(a)}{x - a}$

est croissante.

> Exercice 10.

Soit $f: \mathbb{R} \to \mathbb{R}$ convexe.

On suppose que f admet une limite finie en $+\infty$.

Démontrer que si f n'est pas constante alors :

$$\lim_{x \to -\infty} f(x) = +\infty$$

−B. Croissance des pentes

Théorème

 $f:I\to\mathbb{R}$ est convexe ssi pour tout $a\in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

Corollaire

 $f:I\to\mathbb{R}$ est concave ssi pour tout $a\in I$ la fonction p_a est décroissante.

 $f:I\to\mathbb{R}$ est convexe ssi pour tout $a\in I$ la fonction

$$p_a: I \setminus \{a\} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{f(x) - f(a)}{x - a}$

est croissante.

Corollaire

 $f:I\to\mathbb{R}$ est concave ssi pour tout $a\in I$ la fonction p_a est décroissante.

<u>Démonstration</u>. Soit g = -f et $q_a = -p_a$.

Alors g est convexe ssi les q_a sont croissantes.

−B. Croissance des pentes

Proposition

Soit $f: I \to \mathbb{R}$ une convexe et a intérieur à I. Alors f est dérivable à gauche et à droite en a, et :

$$f'_g(a) \leqslant f'_d(a)$$

B. Croissance des pentes

Proposition

Soit $f:I\to\mathbb{R}$ une convexe et a intérieur à I.

Alors f est dérivable à gauche et à droite en a, et :

$$f_g'(a) \leqslant f_d'(a)$$

<u>Démonstration</u>.

Proposition

Soit $f:I\to\mathbb{R}$ une convexe et a intérieur à I.

Alors f est dérivable à gauche et à droite en a, et :

$$f_g'(a) \leqslant f_d'(a)$$

Démonstration.

−B. Croissance des pentes

Proposition

Soit $f:I\to\mathbb{R}$ une convexe et a intérieur à I. Alors f est dérivable à gauche et à droite en a, et :

$$f_g'(a) \leqslant f_d'(a)$$

Corollaire

Soit $f:I\to\mathbb{R}$ convexe sur un intervalle ouvert I. Alors f est continue.

Proposition

Soit $f:I\to\mathbb{R}$ une convexe et a intérieur à I.

Alors f est dérivable à gauche et à droite en a, et :

$$f_g'(a) \leqslant f_d'(a)$$

Corollaire

Soit $f:I\to\mathbb{R}$ convexe sur un intervalle ouvert I. Alors f est continue.

 $\underline{\mathsf{D\'emonstration}}.$ Tout point de I est intérieur.

Si f est dérivable à gauche et à droite en un point alors elle est continue en ce point.

Proposition

Soit $f: I \to \mathbb{R}$ une convexe et a intérieur à I.

Alors f est dérivable à gauche et à droite en a, et :

$$f_g'(a) \leqslant f_d'(a)$$

Corollaire

Soit $f: I \to \mathbb{R}$ convexe sur un intervalle ouvert I.

Alors f est continue.

Contre-exemple

La fonction smiley.

Chapitre 0. Dérivation

V. Convexité

- A. Définition
- B. Croissance des pentes
- C. Fonctions convexes dérivables

Théorème

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors : $f \text{ convexe } \iff f' \text{ croissante}$

Théorème

Soit $f: I \to \mathbb{R}$ une fonction dérivable. Alors : f convexe $\iff f'$ croissante

 $\underline{\mathsf{D\'{e}monstration}}.\ \mathsf{Supposons}\ \mathsf{que}\ f\ \mathsf{est}\ \mathsf{convexe}.$

Soit $(x,y) \in I^2$ avec x < y. D'après le lemme :

$$\forall t \in]x, y[$$

$$\frac{f(t) - f(x)}{t - x} \leqslant \frac{f(y) - f(x)}{y - x} \leqslant \frac{f(t) - f(y)}{t - y}$$

Théorème

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors :

$$f$$
 convexe \iff f' croissante

 $\underline{\mathsf{D\'emonstration}}.$ Supposons que f est convexe.

Soit $(x,y) \in I^2$ avec x < y. D'après le lemme :

$$\forall t \in]x, y[$$

$$\frac{f(t) - f(x)}{t - x} \leqslant \frac{f(y) - f(x)}{y - x} \leqslant \frac{f(t) - f(y)}{t - y}$$

Passage à la limite $t \to x$ et $t \to y$:

$$f'(x) \leqslant \frac{f(y) - f(x)}{y - x} \leqslant f'(y)$$

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors : f convexe $\iff f'$ croissante

<u>Démonstration</u>. Supposons que f est convexe.

Soit $(x, y) \in I^2$ avec x < y.

$$f'(x) \leqslant \frac{f(y) - f(x)}{y - x} \leqslant f'(y)$$

Par transitivité : $f'(x) \leqslant f'(y)$

Ceci pour tout x et y tels que x < y, donc f' est croissante sur I.

Théorème

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors : f convexe \iff f' croissante

<u>Démonstration</u>. Supposons que f' est croissante.

Soit
$$(x,y) \in I^2$$
 $\lambda \in [0,1]$ $z = (1-\lambda)x + \lambda y$.

On peut supposer que x < z < y.

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors : f convexe $\iff f'$ croissante

<u>Démonstration</u>. Supposons que f' est croissante.

Soit
$$(x,y) \in I^2$$
 $\lambda \in [0,1]$ $z = (1-\lambda)x + \lambda y$.

TAF : f est dérivable $\exists c_1 \in]x, z[\exists c_2 \in]z, y[$:

$$f'(c_1) = \frac{f(z) - f(x)}{z - x}$$
 $f'(c_2) = \frac{f(y) - f(z)}{y - z}$

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors : f convexe $\iff f'$ croissante

<u>Démonstration</u>. Supposons que f' est croissante.

Soit
$$(x,y) \in I^2$$
 $\lambda \in [0,1]$ $z = (1-\lambda)x + \lambda y$.

TAF : f est dérivable $\exists c_1 \in]x, z[\exists c_2 \in]z, y[$:

$$f'(c_1) = \frac{f(z) - f(x)}{z - x} \leqslant f'(c_2) = \frac{f(y) - f(z)}{y - z}$$

$$c_1 < c_2 \text{ donc } f'(c_1) \leqslant f'(c_2).$$

Soit $f: I \to \mathbb{R}$ une fonction dérivable. Alors : f convexe $\iff f'$ croissante

<u>Démonstration</u>. Supposons que f' est croissante.

Soit
$$(x,y) \in I^2$$
 $\lambda \in [0,1]$ $z = (1-\lambda)x + \lambda y$.

$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(z)}{y - z}$$

On calcule $\lambda = \frac{z-x}{y-x}$, donc $(1-\lambda) = \frac{y-z}{y-x}$, puis :

Théorème

Soit $f: I \to \mathbb{R}$ une fonction dérivable. Alors : f convexe $\iff f'$ croissante

<u>Démonstration</u>. Supposons que f' est croissante.

Soit
$$(x,y) \in I^2$$
 $\lambda \in [0,1]$ $z = (1-\lambda)x + \lambda y$.
$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(z)}{y - z}$$

On calcule $\lambda = \frac{z-x}{y-x}$, donc $(1-\lambda) = \frac{y-z}{y-x}$, puis :

$$\frac{f(z) - f(x)}{\lambda(y - x)} \leqslant \frac{f(y) - f(z)}{(1 - \lambda)(y - x)}$$

Théorème

Soit $f: I \to \mathbb{R}$ une fonction dérivable. Alors : f convexe $\iff f'$ croissante

<u>Démonstration</u>. Supposons que f' est croissante.

Soit
$$(x,y) \in I^2$$
 $\lambda \in [0,1]$ $z = (1-\lambda)x + \lambda y$.
$$\frac{f(z) - f(x)}{\lambda(y-x)} \leqslant \frac{f(y) - f(z)}{(1-\lambda)(y-x)}$$
$$\implies (1-\lambda)f(z) - (1-\lambda)f(x) \leqslant \lambda f(y) - \lambda f(z)$$

Théorème

Soit $f: I \to \mathbb{R}$ une fonction dérivable. Alors : f convexe $\iff f'$ croissante

<u>Démonstration</u>. Supposons que f' est croissante.

$$\begin{aligned} \text{Soit } (x,y) &\in I^2 \quad \lambda \in [0,1] \quad z = (1-\lambda)x + \lambda y. \\ \frac{f(z) - f(x)}{\lambda(y-x)} &\leqslant \frac{f(y) - f(z)}{(1-\lambda)(y-x)} \\ \Longrightarrow \quad (1-\lambda)f(z) - (1-\lambda)f(x) &\leqslant \lambda f(y) - \lambda f(z) \\ \Longrightarrow \quad f(z) &\leqslant (1-\lambda)f(x) + \lambda f(y) \end{aligned}$$

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors : $f \text{ convexe } \iff f' \text{ croissante}$

<u>Démonstration</u>. Supposons que f' est croissante.

Soit
$$(x,y) \in I^2$$
 $\lambda \in [0,1]$ $z = (1-\lambda)x + \lambda y$.
$$f(z) \leqslant (1-\lambda)f(x) + \lambda f(y)$$

La fonction f est donc convexe.

Soit $f: I \to \mathbb{R}$ une fonction dérivable. Alors : f convexe $\iff f'$ croissante

<u>Démonstration</u>. Supposons que f' est croissante.

Soit
$$(x,y) \in I^2$$
 $\lambda \in [0,1]$ $z = (1-\lambda)x + \lambda y$.
$$f(z) \leqslant (1-\lambda)f(x) + \lambda f(y)$$

La fonction f est donc convexe.

Le théorème est démontré.

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors : $f \text{ convexe } \iff f' \text{ croissante}$

Corollaire

Soit $f:I\to\mathbb{R}$ deux fois dérivable. Alors : f convexe \iff f'' positive

<u>Démonstration</u>. f' est croissante sur l'intervalle I si et seulement si f'' est positive.

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors : $f \text{ convexe } \iff f' \text{ croissante}$

Corollaire

Soit $f: I \to \mathbb{R}$ deux fois dérivable. Alors : f concave $\iff f''$ négative

Corollaire

Soit $f:I \to \mathbb{R}$ deux fois dérivable. Alors : f convexe $\iff f''$ positive f concave $\iff f''$ négative

Exemple 11

$$x \mapsto x \qquad x \mapsto x^2 \qquad x \mapsto e^x \qquad x \mapsto \operatorname{ch} x$$
 sont convexes sur \mathbb{R} .

 $x\mapsto \frac{1}{x}$ est convexe sur \mathbb{R}_+^* , concave sur \mathbb{R}_-^* .

 $x \mapsto \ln x$ est concave sur \mathbb{R}_+^* .

 $x \mapsto \sqrt{x}$ est concave sur \mathbb{R}_+ .

Chapitre 0. Dérivation

└V. Convexité

C. Fonctions convexes dérivables

Théorème

La courbe représentative d'un fonction convexe dérivable est au-dessus de toutes ses tangentes.

Théorème

La courbe représentative d'un fonction convexe dérivable est au-dessus de toutes ses tangentes.

⊳ Exercice 11.

Démontrer ce résultat.

La courbe représentative d'un fonction convexe dérivable est au-dessus de toutes ses tangentes.

Remarque

La courbe représentative d'un fonction concave dérivable est en-dessous de toutes ses tangentes.

La courbe représentative d'un fonction convexe dérivable est au-dessus de toutes ses tangentes.

Remarque

La courbe représentative d'un fonction concave dérivable est en-dessous de toutes ses tangentes.

Exemple

$$\forall x \in \mathbb{R} \qquad e^x \geqslant x+1$$

$$\forall x \in \mathbb{R}_+^* \qquad \ln x \leqslant x - 1$$

La courbe représentative d'un fonction convexe dérivable est au-dessus de toutes ses tangentes.

Remarque

La courbe représentative d'un fonction concave dérivable est en-dessous de toutes ses tangentes.

⊳ Exercice 12.

Démontrer que :

$$\forall x \in \left[0, \frac{\pi}{2}\right] \qquad \frac{2}{\pi} x \leqslant \sin x \leqslant x$$

Prochain chapitre

Chapitre B8 Espaces vectoriels