Devoir à la maison n° 15 Corrigé

Exercice 1.

1. Soit $t \in [0, 2\pi]$, on a directement :

$$(x - \cos(t))^2 + \sin^2(t) = x^2 - 2x\cos(t) + \cos^2(t) + \sin^2(t) = x^2 - 2x\cos(t) + 1,$$

donc $x^2 - 2x\cos(t) + 1 \ge 0$, et:

$$x^2 - 2x\cos(t) + 1 = 0 \Rightarrow \begin{cases} x - \cos(t) &= 0 \\ \sin(t) &= 0 \end{cases} \Rightarrow 1 = \cos^2(t) + \sin^2(t) = x^2 \Rightarrow x = \pm 1, \text{ ce qui est exclu},$$

donc $x^2 - 2x\cos(t) + 1 > 0$. Donc la fonction $t \mapsto \ln(x^2 - 2x\cos(t) + 1)$ est bien définie sur $[0, 2\pi]$, donc I(x) est bien définie.

2. Par définition, on a :

$$u_n = \frac{2\pi}{n} \sum_{k=0}^{n-1} \ln\left(x^2 - 2x\cos\left(\frac{2k\pi}{n}\right) + 1\right).$$

3. On a directement:

$$v_n = \exp\left(\sum_{k=0}^{n-1} \ln\left(x^2 - 2x\cos\left(\frac{2k\pi}{n}\right) + 1\right)\right) = \prod_{k=0}^{n-1} \left(x^2 - 2x\cos\left(\frac{2k\pi}{n}\right) + 1\right).$$

Or, pour $k \in [0, n-1]$, on a :

$$\left(x - e^{i\frac{2k\pi}{n}}\right)\left(x - e^{-i\frac{2k\pi}{n}}\right) = x^2 - \left(e^{i\frac{2k\pi}{n}} + e^{-i\frac{2k\pi}{n}}\right)x + 1 = x^2 - 2x\cos\left(\frac{2k\pi}{n}\right) + 1,$$

$$\operatorname{donc}: v_n = \prod_{k=0}^{n-1} \left(x - e^{i\frac{2k\pi}{n}} \right) \left(x - e^{-i\frac{2k\pi}{n}} \right).$$

Or, la famille $\left(e^{i\frac{2k\pi}{n}}\right)_{k\in \llbracket 0,n-1\rrbracket}$ est la famille des racines $n^{\text{\`e}mes}$ de l'unité, donc :

$$\prod_{k=0}^{n-1}\left(x-e^{i\frac{2k\pi}{n}}\right)=x^n-1 \text{ ; et de même, } \prod_{k=0}^{n-1}\left(x-e^{-i\frac{2k\pi}{n}}\right)=x^n-1,$$

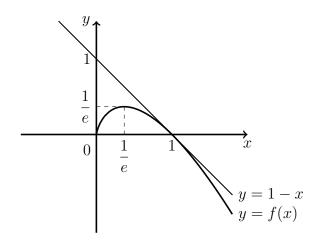
d'où : $v_n = (x^n - 1)^2$.

- 4. On a donc : $u_n = \frac{2\pi}{n} \ln(v_n) = \frac{4\pi}{n} \ln|x^n 1|$. D'après le théorème des sommes de Riemann, la suite (u_n) converge vers I(x). Par disjonction de cas :
 - (u_n) converge vers I(x). Par disjonction de cas: • si |x| < 1, alors $x^n \underset{n \to +\infty}{\longrightarrow} 0$, donc $\ln |x^n - 1| \underset{n \to +\infty}{\longrightarrow} \ln(1) = 0$, donc I(x) = 0,
 - si |x| > 1, alors $u_n = \frac{4\pi}{n} \ln |x^n (1 x^{-n})| = 4\pi \ln |x| + \frac{4\pi}{n} \ln |1 x^{-n}|$, avec $\ln |1 x^{-n}| \xrightarrow[n \to +\infty]{} \ln(1) = 0$, donc $I(x) = 4\pi \ln |x|$.

Exercice 2.

1. La fonction f est concave sur \mathbb{R}_+ , donc est endessous de ses tangentes. Sa tangente en 1 ayant pour équation y=1-x, on a donc :

$$\forall x \ge 0, \ f(x) \le 1 - x.$$



2. (a) Notons a la seule valeur prise par X. On a alors $\mathbb{P}(X=a)=1$, donc :

$$H(X) = f(\mathbb{P}(X = a)) = f(1) = 0.$$

(b) On a $X(\Omega)=[\![1,N]\!]$, et : $\forall k\in[\![1,N]\!]$, $\mathbb{P}(X=k)=\frac{1}{N}$. Donc :

$$H(X) = \sum_{k=1}^{N} f\left(\mathbb{P}(X=k)\right) = Nf\left(\frac{1}{N}\right) = \ln(N).$$

- 3. (a) Pour tout $x \in X(\Omega)$, $\mathbb{P}(X = x) \in [0, 1]$ (c'est une probabilité), donc, comme $f([0, 1]) = \left[0, \frac{1}{e}\right]$: $f(\mathbb{P}(X = x)) \geq 0$. Donc $H(X) \geq 0$.
 - (b) D'après (C), on a directement :

$$\sum_{x \in X(\Omega)} f(N\mathbb{P}(X = x)) \le \sum_{x \in X(\Omega)} (1 - N\mathbb{P}(X = x)) = N - N \sum_{x \in X(\Omega)} \mathbb{P}(X = x) = N - N = 0.$$

(c) On a : $\forall x \in X(\Omega)$,

$$f\left(N\mathbb{P}(X=x)\right) = -N\mathbb{P}(X=x)\ln\left(N\mathbb{P}(X=x)\right) = -N\ln(N)\mathbb{P}(X=x) - N\mathbb{P}(X=x)\ln\left(\mathbb{P}(X=x)\right),$$

donc:

$$\begin{split} \sum_{x \in X(\Omega)} f\left(N\mathbb{P}(X=x)\right) &= -N \ln(N) \sum_{x \in X(\Omega)} \mathbb{P}(X=x) - N \sum_{x \in X(\Omega)} f\left(\mathbb{P}(X=x)\right) \\ &= -N \ln(N) + NH(X). \end{split}$$

- (d) D'après les deux questions précédentes : $-N \ln(N) + NH(X) \le 0$, d'où : $H(X) \le \ln(N)$.
- 4. On a vu que l'entropie est minorée par 0, et que cette valeur est atteinte pour les variables aléatoires constantes. Réciproquement, si l'entropie d'une variable aléatoire X est nulle, alors : $\forall x \in X(\Omega)$, $\mathbb{P}(X=x)$ est un point d'annulation de f, c'est-à-dire que $\mathbb{P}(X=x)=1$ ou 0. La variable aléatoire X est donc constante.

Les variables aléatoires d'entropie minimale sont donc les variables aléatoires constantes.

De même, l'entropie d'une variable aléatoire X est majorée par $\ln(|X(\Omega)|)$, et cette valeur est atteinte si X est de loi uniforme. Réciproquement, si l'entropie de X est égale à $\ln(|X(\Omega)|)$, alors il y a égalité

dans le résultat de la question 3.(b) : $\forall x \in X(\Omega), \ f(N\mathbb{P}(X=x)) = 1 - N\mathbb{P}(X=x)$; donc, par convexité de $f:N\mathbb{P}(X=x)=1$, donc $\mathbb{P}(X=x)=\frac{1}{N}$, et donc X suit une loi uniforme. Les variables aléatoires d'entropie maximale sont donc celles qui suivent une loi uniforme. Cette notion d'entropie a été introduite en 1948 par Claude Shannon (1916-2001). Elle mesure le degré de brouillage d'un message, et est centrale en théorie de l'information.