Devoir à la maison n° 14

Exercice 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire définie par f(x,y) = (x+2y,2x-y,2x+3y).

- 1. Déterminer la matrice de f par rapport aux bases canoniques $\mathcal{B}_2 = (e_1, e_2)$ de \mathbb{R}^2 et $\mathcal{B}_3 = (f_1, f_2, f_3)$ de \mathbb{R}^3 .
- 2. Soient $\mathcal{B}_2' = (e_1, e_1 e_2)$ et $\mathcal{B}_3' = (f_1, f_1 + f_2, f_1 + f_2 + f_3)$ de nouvelles bases de \mathbb{R}^2 et \mathbb{R}^3 respectivement.
 - (i) Déterminer les matrices de passage de \mathcal{B}_2 à \mathcal{B}'_2 et de \mathcal{B}_3 à \mathcal{B}'_3 .
 - (ii) En déduire la matrice de f par rapport à \mathcal{B}'_2 et \mathcal{B}'_3 .
- 3. Soit $g: \mathbb{R}^3 \to \mathbb{R}^3$ définie par g(x,y,z) = f(x+z,y+z). Déterminer le déterminant de g. Que peut-on en déduire?

Exercice 2. Soient $a, b, c \in C$. On note $j = e^{i\frac{2\pi}{3}}$.

On considère les matrices $M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$ et $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$.

- 1. Calculer le déterminant de J. La matrice J est-elle inversible f
- 2. Effectuer le produit MJ. Exprimer $\det(MJ)$ en fonction de $\det(J)$, puis en déduire $\det(M)$.