Exercice 1

Systèmes de 3 équations à 3 inconnues

Résoudre dans \mathbb{R}^3 .

1.
$$\begin{cases} x+2y-z = -3\\ 2x-y+z = 8\\ 3x+y+2z = 11 \end{cases}$$

1.
$$\begin{cases} x+2y-z = -3 \\ 2x-y+z = 8 \\ 3x+y+2z = 11 \end{cases}$$
2.
$$\begin{cases} a-b-c = -7 \\ 3a+2b-c = 3 \\ 4a+b+2c = 4 \end{cases}$$
3.
$$\begin{cases} x+3y+z = 1 \\ 2x-y+2z = -1 \\ x+10y+z = 0 \end{cases}$$
4.
$$\begin{cases} x+2y-z = 2 \\ 3x-y+z = 1 \\ -2x+3y-2z = 1 \end{cases}$$

2.
$$\begin{cases} a-b-c = -7 \\ 3a+2b-c = 3 \\ 4a+b+2c = 4 \end{cases}$$

4.
$$\begin{cases} 3x - y + z \\ -2x + 3y - 2z \end{cases}$$

1.
$$(2,-1,3)$$
, 2. $(-1,4,2)$, 3. \emptyset , 4. $\left(\frac{4-z}{7},\frac{5+4z}{7},z\right)$, $z \in \mathbb{R}$

Exercice 2

Systèmes de 2 équations à 3 inconnues

Résoudre dans \mathbb{R}^3 .

1.
$$\begin{cases} x + 2y + z = 1 \\ 3x + y - 2z = 3 \end{cases}$$

1.
$$\begin{cases} x+2y+z = 1\\ 3x+y-2z = 3 \end{cases}$$
2.
$$\begin{cases} 3x-2y+z = 6\\ x+2y-z = -2 \end{cases}$$

3.
$$\begin{cases} x - y + 3z = 5/2 \\ x + 2y - z = 3/2 \end{cases}$$

3.
$$\begin{cases} x - y + 3z = 5/2 \\ x + 2y - z = 3/2 \end{cases}$$
4.
$$\begin{cases} 5x + y + 2z = -5/2 \\ 2x - y + 2z = -5/3 \end{cases}$$

Exercice 3

On considère les points A(-2;3;4) et B(5;-1;0).

- **1.** Donner une équation paramétrique de (AB).
- **2.** Les points C(12, -5, 4) et D(-4, 6, 8) sont-ils alignés avec A et B?

Exercice 4

Dans l'espace, la droite (d) est définie par la représentation paramétrique

$$\begin{cases} x = 3+2t \\ y = -t \\ z = 5+2t \end{cases}, \quad t \in \mathbb{R}.$$

- 1. Donner les coordonnées de deux points de la droite (d).
- 2. Donner les coordonnées d'un vecteur \vec{u} directeur de la droite.
- **3.** On considère la droite (d') passant par le point A'(0;4;8) et de vecteur directeur $\overrightarrow{u'}$ 3

- (a) Déterminer une équation de la droite (d')
- (b) Les droites (d) et (d') sont-elles sécantes? Si oui, déterminer les coordonnées du point d'intersection.

Exercice 5

On considère les représentations paramétriques de trois droites différentes de l'espace. Déterminer les positions relatives de ces droites entre elles deux à deux.

$$(d_1): \left\{ \begin{array}{l} x = -3 + 6t \\ y = -3 + 6t \\ z = 3 - 6t \end{array} \right. \ \, (d_2): \left\{ \begin{array}{l} x = 1 + t \\ y = -2 + t \\ z = 1 - t \end{array} \right. \ \, (d_3): \left\{ \begin{array}{l} x = -3 + 6t \\ y = 3 - 6t \\ z = -3 - 6t \end{array} \right. , \ \, t \in \mathbb{R}$$

Exercice 6

On considère, dans l'espace muni d'un repère $\left(O; \vec{i}; \vec{j}; \vec{k}\right)$ les points A(1; 3; 5), B(-2:-1:1) et C(0:1:2).

Démontrer que les trois points définissent un plan et donner une équation paramétrique de ce plan.

Exercice 7

Soit \mathscr{P} le plan admettant pour équation paramétrique :

$$\mathcal{P} \colon \left\{ \begin{array}{l} x = -1 + t + 2s \\ y = -t + s \\ z = -2 + 3t - 2s \end{array} \right. , \ t, s \in \mathbb{R}$$

- 1. Donner les coordonnées de deux points distincts du plan P ainsi que deux de ses vecteurs directeurs.
- 2. Déterminer les intersections de \mathcal{P} avec les 3 axes de coordonnées.

Exercice 8

QCM

1. Dans l'espace rapporté à un repère orthonormé $(0; \vec{i}; \vec{j}; \vec{k})$, on considère les points A(1; 0; 2), B(2; 1; 0), C(0; 1; 2) et la droite Δ dont une représentation paramétrique

$$\begin{cases} x = 1+2t \\ y = -2+t, t \in \mathbb{R} \\ z = 4-t \end{cases}$$

(a) Parmi les points suivants, lequel appartient à la droite Δ ?

Réponse A: M(2; 1; -1);**Réponse C**: P(-3; -4; 2);**Réponse B** : N(-3; -4; 6); **Réponse D** : Q(-5; -5; 1).

(b) Le vecteur \overrightarrow{AB} admet pour coordonnées :

Réponse A :
$$\begin{pmatrix} 1,5\\0,5\\1 \end{pmatrix}$$
; Réponse B : $\begin{pmatrix} -1\\-1\\2 \end{pmatrix}$
Réponse C : $\begin{pmatrix} 1\\1\\-2 \end{pmatrix}$

(c) Une représentation paramétrique de la droite (AB) est :

Réponse A :
$$\begin{cases} x = 1 + 2t \\ y = t \\ z = 2 \end{cases}$$
 Réponse B :
$$\begin{cases} x = 2 - t \\ y = 1 - t \\ z = 2t \end{cases}$$
 Réponse C :
$$\begin{cases} x = 2 + t \\ y = 1 + t \\ z = 2t \end{cases}$$
 Réponse D :
$$\begin{cases} x = 2 - t \\ y = 1 - t \\ z = 2t \end{cases}$$

(d) On considère le point D défini par la relation vectorielle $\overrightarrow{OD} = 3\overrightarrow{OA} - \overrightarrow{OB} - \overrightarrow{OC}$.

Réponse A : \overrightarrow{AD} , \overrightarrow{AB} , \overrightarrow{AC} sont coplanaires :

Réponse B : $\overrightarrow{AD} = \overrightarrow{BC}$:

Réponse C: D a pour coordonnées (3; -1; -1);

Réponse D: les points A, B, C et D sont alignés.

2. L'espace est rapporté à un repère orthonormé $(O; \vec{i}; \vec{j}; \vec{k})$

On considère :

- La droite \mathcal{D} passant par les points A(1; 1; -2) et B(-1; 3; 2).
- La droite \mathcal{D}' de représentation paramétrique :

$$\begin{cases} x = -4 + 3t \\ y = 6 - 3t \\ z = 8 - 6t \end{cases} \text{ avec } t \in \mathbb{R}$$

Question 1: Parmi les points suivants, lequel appartient à la droite \mathcal{D}' ?

- **a.** $M_1(-1; 3; -2)$
- **b.** $M_2(11; -9; -22)$ **d.** $M_4(-2: 3: 4)$
- **c.** $M_3(-7:9:2)$

Question 2: Un vecteur directeur de la droite \mathcal{D}' est :

- **a.** $\vec{u}_1 \begin{pmatrix} -4 \\ 6 \\ 8 \end{pmatrix}$ **b.** $\vec{u}_2 \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix}$ **c.** $\vec{u}_3 \begin{pmatrix} 3 \\ -3 \\ -6 \end{pmatrix}$ **d.** $\vec{u}_4 \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$

Question 3: Les droites \mathscr{D} et \mathscr{D}' sont :

a. sécantes

b. strictement parallèles

c. non coplanaires

d. confondues

Si on munit l'espace d'un repère orthonormé $(O; \vec{i}; \vec{j}; \vec{k})$

On considère les points A(-1; 2; 5), B(3; 6; 3), C(3; 0; 9) et D(8; -3; -8). On admet que les points A, B et C ne sont pas alignés.

- 3. ABC est un triangle :
 - a. isocèle rectangle en A

b. isocèle rectangle en B

c. isocèle rectangle en C

- d. équilatéral
- 4. Une équation cartésienne du plan (BCD) est :
 - **a.** 2x + y + z 15 = 0

- **c.** 4x + y + z 21 = 0
- **b.** 9x 5y + 3 = 0 **d.** 11x + 5z 73 = 0**d.** 11x + 5z - 73 = 0
- **5.** On admet que le plan (ABC) a pour équation cartésienne x-2y-2z+15=0.

On appelle H le projeté orthogonal du point D sur le plan (ABC).

On peut affirmer que :

a. H(-2; 17; 12)

b. H(3 : 7 : 2)

- c. H(3~;~2~;~7) d. H(-15~;~1~;~-1) 6. Soit la droite Δ de représentation paramétrique $\begin{cases} x=&5+t\\y=&3-t \end{cases}$, avec t réel.

Les droites (BC) et Δ sont :

a. confondues

b. strictement parallèles

c. sécantes

- d. non coplanaires
- 7. On considère le plan \mathscr{P} d'équation cartésienne 2x y + 2z 6 = 0.

On admet que le plan (ABC) a pour équation cartésienne x-2y-2z+15=0.

On peut affirmer que :

- a. les plans \mathscr{P} et (ABC) sont strictement parallèles
- b. les plans \mathscr{P} et (ABC) sont sécants et leur intersection est la droite (AB)
- c. les plans \mathscr{P} et (ABC) sont sécants et leur intersection est la droite (AC)
- **d.** les plans \mathscr{P} et (ABC) sont sécants et leur intersection est la droite (BC)

Exercice 9

Dans un repère orthonormé $(O; \vec{i}; \vec{j}; \vec{k})$ de l'espace, on considère les points

$$A(-3; 1; 3), B(2; 2; 3), C(1; 7; -1), D(-4; 6; -1) \text{ et } K(-3; 14; 14).$$

- 1. (a) Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{DC} et \overrightarrow{AD} .
 - (b) Montrer que le quadrilatère ABCD est un rectangle.
 - (c) Calculer l'aire du rectangle ABCD.
- 2. (a) Justifier que les points A, B et D définissent un plan.
 - (b) Montrer que le vecteur $\vec{n}(-2; 10; 13)$ est un vecteur normal au plan (ABD).
 - (c) En déduire une équation cartésienne du plan (ABD).
- 3. (a) Donner une représentation paramétrique de la droite Δ orthogonale au plan (ABD) et qui passe par le point K.

- (b) Déterminer les coordonnées du point I, projeté orthogonal du point K sur le plan (ABD).
- (c) Montrer que la hauteur de la pyramide KABCD de base ABCD et de sommet K vaut $\sqrt{273}$.
- 4. Calculer le volume V de la pyramide KABCD.

On rappelle que le volume V d'une pyramide est donné par la formule :

$$V = \frac{1}{3} \times \text{aire de la base} \times \text{hauteur.}$$

Exercice 10

Dans l'espace, rapporté à un repère orthonormé $(O; \vec{i}; \vec{j}; \vec{k})$, on considère les points :

$$A(2; 0; 3), B(0; 2; 1), C(-1; -1; 2) \text{ et } D(3; -3; -1).$$

1. Calcul d'un angle

- (a) Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} et en déduire que les points A, B et C ne sont pas alignés.
- (b) Calculer les longueurs AB et AC.
- (c) À l'aide du produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$, déterminer la valeur du cosinus de l'angle $\widehat{\mathsf{BAC}}$ puis donner une valeur approchée de la mesure de l'angle $\widehat{\mathsf{BAC}}$ au dixième de degré.

2. Calcul d'une aire

- (a) Déterminer une équation du plan ${\mathcal P}$ passant par le point C et perpendiculaire à la droite (AB).
- (b) Donner une représentation paramétrique de la droite (AB).
- (c) En déduire les coordonnées du projeté orthogonal E du point C sur la droite (AB), c'est-à-dire du point d'intersection de la droite (AB) et du plan ${\mathscr P}$
- (d) Calculer l'aire du triangle ABC.

3. Calcul d'un volume

- (a) Soit le point F(1; -1; 3). Montrer que les points A, B, C et F sont coplanaires.
- (b) Vérifier que la droite (FD) est orthogonale au plan (ABC).
- (c) Sachant que le volume d'un tétraèdre est égal au tiers de l'aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre ABCD.

Exercice 11

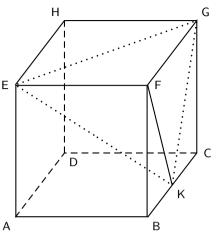
On considère un cube ABCDEFGH et on appelle K le milieu du segment [BC].

On se place dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ et on considère le tétraèdre EFGK.

On rappelle que le volume d'un tétraèdre est donné par :

$$V = \frac{1}{3} \times \mathscr{B} \times h$$

où ${\mathcal B}$ désigne l'aire d'une base et h la hauteur relative à cette base.



- 1. Préciser les coordonnées des points E, F, G et K.
- 2. Montrer que le vecteur $\vec{n} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$ est orthogonal au plan (EGK).
- 3. Démontrer que le plan (EGK) admet pour équation cartésienne : 2x-2y+z-1=0.
- 4. Déterminer une représentation paramétrique de la droite (d) orthogonale au plan (EGK) passant par F.
- 5. Montrer que le projeté orthogonal L de F sur le plan (EGK) a pour coordonnées $\left(\frac{5}{9}; \frac{4}{9}; \frac{7}{9}\right)$.
- 6. Justifier que la longueur LF est égale à $\frac{2}{3}$.
- 7. Calculer l'aire du triangle EFG. En déduire que le volume du tétraèdre EFGK est égal à $\frac{1}{6}$.
- 8. Déduire des questions précédentes l'aire du triangle EGK.
- 9. On considère les points P milieu du segment [EG], M milieu du segment [EK] et N milieu du segment[GK]. Déterminer le volume du tétraèdre FPMN.

Exercice 12

L'espace est muni d'un repère orthonormée $(O; \vec{i}; \vec{j}; \vec{k})$. On considère :

- d_1 la droite passant par le point H(2; 3; 0) et de vecteur directeur $\vec{u} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$;
- d_2 la droite de représentation paramétrique :

$$\begin{cases} x = 2k-3 \\ y = k \\ z = 5 \end{cases}$$
 où k décrit \mathbb{R} .

Le but de cet exercice est de déterminer une représentation paramétrique d'une droite Δ qui soit perpendiculaire aux droites d_1 et d_2 .

- 1. (a) Déterminer un vecteur directeur \vec{v} de la droite d_2 .
 - (b) Démontrer que les droites d_1 et d_2 ne sont pas parallèles.
 - (c) Démontrer que les droites d_1 et d_2 ne sont pas sécantes.
 - (d) Quelle est la position relative des droites d_1 et d_2 ?
- 2. (a) Vérifier que le vecteur $\vec{w} \begin{pmatrix} -1\\2\\3 \end{pmatrix}$ est orthogonal à \vec{u} et à \vec{v} .
 - (b) On considère le plan P passant par le point H et dirigé par les vecteurs \vec{u} et \vec{w} . On admet qu'une équation cartésienne de ce plan est :

$$5x + 4y - z - 22 = 0.$$

Démontrer que l'intersection du plan P et de la droite d_2 est le point M(3 ; 3 ; 5).

3. Soit Δ la droite de vecteur directeur \vec{w} passant par le point M.

Une représentation paramétrique de Δ est donc donnée par :

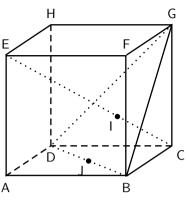
$$\begin{cases} x = -r+3 \\ y = 2r+3 \\ z = 3r+5 \end{cases}$$
 où r décrit \mathbb{R}

- (a) Justifier que les droites Δ et d_1 sont perpendiculaires en un point L dont on déterminera les coordonnées.
- (b) Expliquer pourquoi la droite Δ est solution du problème posé.

Exercice 13

On considère le cube ABCDEFGH d'arête 1. On appelle I le point d'intersection du plan (GBD) avec la droite (EC).

L'espace est rapporté au repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.



- 1. Donner dans ce repère les coordonnées des points E, C, G.
- 2. Déterminer une représentation paramétrique de la droite (EC).
- 3. Démontrer que la droite (EC) est orthogonale au plan (GBD).
- 4. (a) Justifier qu'une équation cartésienne du plan (GBD) est :

$$x+y-z-1=0.$$

- (b) Montrer que le point l a pour coordonnées $\left(\frac{2}{3}; \frac{2}{3}; \frac{1}{3}\right)$.
- (c) En déduire que la distance du point E au plan (GBD) est égale à $\frac{2\sqrt{3}}{3}$.
- 5. (a) Démontrer que le triangle BDG est équilatéral.
 - (b) Calculer l'aire du triangle BDG.On pourra utiliser le point J, milieu du segment [BD].
- 6. Justifier que le volume du tétraèdre EGBD est égal à $\frac{1}{3}$.

On rappelle que le volume d'un tétraèdre est donné par $V = \frac{1}{3}Bh$ où B est l'aire d'une base du tétraèdre et h est la hauteur relative à cette base.