Calculatrices autorisées - Durée : 1h30 (2H pour les tiers-temps).

► Exercice 1 /2

Résoudre dans \mathbb{C} les équations suivantes :

- 1. 3z + 1 2i = 4 3i 2iz
- 2. $3\overline{z} + 2i = iz$

► Exercice 2 /3

On considère le polynôme P défini sur $\mathbb C$ par $P(z)=z^3-(2+\mathrm{i}\sqrt{2})z^2+2(1+\mathrm{i}\sqrt{2})z-2\mathrm{i}\sqrt{2}$.

- 1. Montrer que le nombre $z_0 = i\sqrt{2}$ est une racine de P.
- 2. Factoriser le polynôme P
- 3. En déduire les solutions de l'équation P(z) = 0 dans \mathbb{C} .

► Exercice 3 /3

- 1. Trouver sous la forme a+ib (a et b réels) un nombre complexe ω tel que $\omega^2=48+14i$
- 2. Résoudre dans \mathbb{C} l'équation $z^2 5(1+i)z 12 + 9i = 0$
- 3. Vérifier que le quotient des racines est un imaginaire pur.

► Exercice 4 /4

On considère la fonction f de $\mathbb C$ dans $\mathbb C$ qui à tout nombre complexe différent de -1, associe $f(z)=\frac{\mathrm{i} z}{z+1}$

- 1. Soit $z_1 = -\frac{1}{2} + i$. Donner l'expression algébrique de $f(z_1)$.
- 2. Déterminer les solutions de l'équation f(z) = z.
- 3. On pose z = x + iy, avec x et y réels tels que $(x, y) \neq (-1, 0)$.
 - (a) Déterminer l'ensemble $\mathscr E$ des couples $(x,y)\in\mathbb R\times\mathbb R$ tels que $f(z)\in\mathbb R$.
 - (b) Déterminer l'ensemble \mathscr{F} des couples $(x, y) \in \mathbb{R} \times \mathbb{R}$ tels que $f(z) \in i\mathbb{R}$.
 - (c) Interpréter ces ensembles en terme géométrique.

► Exercice 5 /2

On considère le nombre complexe $z = \frac{3-3i}{\sqrt{3}+i}$.

- 1. Déterminer la forme exponentielle de z
- 2. En déduire l'écriture algébrique de z^{10} .

► Exercice 6 /2

Linéariser l'expression $\cos^2(x)\sin(x)$ pour x réel.

► Exercice 7 Problème /6

Soient A et B les points d'affixes respectives -1 et 1. À chaque point M du plan complexe d'affixe $z \in \mathbb{C}^*$, on associe le point M' d'affixe z' tel que

$$z' = \frac{1}{2} \left(z + \frac{1}{z} \right).$$

- 1. Déterminer l'ensemble des points M d'affixe $z \in \mathbb{C}^*$ tels que z' = z.
- 2. Soit M un point d'affixe $z \in \mathbb{C}^*$, distinct de A et de B. Justifier l'égalité

$$\frac{z'+1}{z'-1} = \left(\frac{z+1}{z-1}\right)^2$$

- 3. En déduire $\frac{M'A}{M'B}$ en fonction de $\frac{MA}{MB}$ et l'angle $(\overrightarrow{M'A}; \overrightarrow{M'B})$ en fonction de l'angle $(\overrightarrow{MA}; \overrightarrow{MB})$.
- 4. Montrer que si le point M, distinct de l'origine O du repère, appartient à l'axe des ordonnées alors il en est de même pour M'.

Que peut-on dire du point M' lorsque M est proche de O sur la droite des ordonnées?

5. soit Γ le cercle de diamètre [AB]. Démontrer que

$$M \in \Gamma \iff M' \in [AB]$$

Distinguer les cas M est distinct de A et B ou pas.

► Exercice 8 /3

On pose $z = \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}$.

- 1. Justifier que l'écriture algébrique de z^2 est $\frac{\sqrt{2}}{2}$ + $i\frac{\sqrt{2}}{2}$.
- 2. Par une technique de recherche de racine carrée, déterminer les valeurs exactes de $\cos\frac{\pi}{8}$ et $\sin\frac{\pi}{8}$.