Exercice 1

Partie A

On considère la suite (u_n) définie par :

$$\forall n \in \mathbb{N}^*, \ u_n = \int_0^1 (1-t)^n e^t dt.$$

- 1. Montrer que la fonction $f: t \mapsto (2-t)e^t$ est une primitive de $g: t \mapsto (1-t)e^t$ sur [0; 1]. En déduire la valeur de u_1 .
- 2. Montrer à l'aide d'une intégration par parties que, pour tout n non nul,

$$u_{n+1} = (n+1)u_n - 1$$
 (R)

Partie B

Dans cette partie on se propose d'étudier la suite (u_n) à partir de la définition : $\forall n \in \mathbb{N}^*$, $u_n = \int_0^1 (1-t)^n e^t dt$

- 1. Montrer que pour tout entier naturel n non nul, $u_n \ge 0$.
- 2. (a) Montrer que pour tout réel t de l'intervalle [0; 1] et pour tout entier naturel non nul n

$$(1-t)^n e^t \leqslant e \times (1-t)^n$$
.

- (b) En déduire que pour tout n non nul, $u_n \leqslant \frac{e}{n+1}$.
- 3. Déterminer la limite de la suite (u_n) .

Partie C

Dans cette partie, on se propose d'exploiter la relation de récurrence (R) vérifiée par la suite (u_n) .

$$u_{n+1} = (n+1)u_n - 1$$

Étant donné un réel a, on considère la suite (v_n) définie par :

 $v_1 = a$ et pour tout entier naturel non nul n, $v_{n+1} = (n+1)v_n - 1$.

- 1. En utilisant le raisonnement par récurrence, montrer que pour tout entier naturel non nul n, $v_n = u_n + (n!)(a+2-e)$ où n! désigne le produit des n premiers entiers naturels non nuls.
- 2. Étudier le comportement de la suite (v_n) à l'infini suivant les valeurs de a.

(On rappelle que
$$\lim_{n\to+\infty} n! = +\infty$$
.)

Exercice 2

On pose pour tous p, q entiers naturels, $I(p,q) = \int_0^1 x^p (1-x)^q dx$

- 1. Lorsque p > 0, donner une relation entre I(p,q) et I(p-1,q+1).
- 2. En déduire I(p,q).

Exercice 3

Soit $n \in \mathbb{N}$, $W_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$

- 1. Montrer que la suite (W_n) est décroissante et convergente vers $L \geqslant 0$.
- 2. Si $n \ge 1$, trouver une relation entre W_{n+1} et W_{n-1} , en déduire la valeur de nW_nW_{n-1} , puis la valeur de L.
- 3. Si $p \in \mathbb{N}$, calculer W_{2p} et W_{2p+1} .

Exercice 4

Soit $n \in \mathbb{N}$. On considère ϕ_n définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $\phi_n(x) = (1-x)^n \mathrm{e}^{-2x}$ et on pose $I_n = \int_0^1 \phi_n(x) \mathrm{d}x$.

- 1. Calculer I_0 et I_1 .
- 2. Étudier la monotonie de (I_n) puis montrer que (I_n) converge.
- 3. Démontrer que $\forall n \in \mathbb{N}$, $0 \le I_n \le \frac{1}{n+1}$. Que peut-on en déduire?
- 4. Démontrer que $2I_{n+1} = 1 (n+1)I_n$.
- 5. En déduire les limites suivantes : $\lim_{n \to \infty} nI_n$ et $\lim_{n \to \infty} n(nI_n 1)$