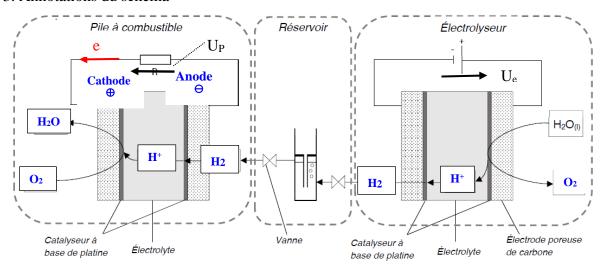
Exercice 1 (e3A, PC, 2020) / Le dihydrogène, un vecteur d'énergie verte

1. En supposant que le milieu électrolytique est acide, les demi -réactions s'écrivent

 $Couple \; H^+ \, / \; H_{2(g)} \quad \colon 2H^+ \; + 2\; e \; \rightleftarrows \; H_{2(g)}$

Couple $O_{2(g)} / H_2O : O_{2(g)} + 4 H^+ + 4 e \rightleftharpoons 2 H_2O$


2. La réaction de fonctionnement d'une pile doit être thermodynamiquement favorisée , ce qui permet de déterminer dans quel sens les réactions électrochimiques se produisent . Pour l'électrolyseur la réaction est l'inverse de celle de la pile

Pile : $H_{2(g)} + 0.5 O_{2(g)} \rightarrow H_2O_{(l)}$

 $Electrolyseur: \ H_2O_{(1)} \rightarrow H_{2(g)} \ + \ 0,5 \ O_{2(g)}$

Pour la pile , le H₂ est oxydé : c'est le combustible et O_{2(g)} est le comburant

3. Annotations du schéma

4. La partie anodique (j > 0) correspond à l'oxydation de l'eau $H_2O \rightarrow O_2$ La partie cathodique (j < 0) correspond à la réduction de l'eau $H^+ \rightarrow H_2$

Un palier est observé si les phénomènes de transport et plus particulièrement la diffusion constituent le phénomène limitant .

La diffusion est régie par la loi de Fick : pour que la diffusion se produise sans difficulté il faut qu'il existe un gradient de concentrations pour l'espèce électroactive . Pour les espèces en <u>large quantité ou pour le solvant</u> , ce gradient est bien réel , par conséquent la diffusion ne peut pas être limitante .

5. Pour l'électrolyseur, la réaction de fonctionnement écrite ci-dessus est la réaction redox au cours de laquelle l'eau est simultannémet oxydée et réduite (dismutation de l'eau). A 25°C, sa constante d'équilibre vérifie la relation :

$$0.06 \log K^{\circ} = 2 (E^{\circ}_{H2O H2} - E^{\circ}_{O2/H2O})$$
 soit $K^{\circ} = 10^{-41}$

C'est une réaction qui n'est pas thermodynamiquement favorisée, c'est pourquoi il est nécessaire de la provoquer en imposant une tension entre les deux électrodes.

6. Soit E_a (resp. E_c) le potentiel à partir duquel la densité de courant devient non nulle pour la branche anodique (resp. cathodique).

La tension minimale à imposer s'exprime alors selon $U_e = E_a - E_c$.

On lit sur le graphe fourni $E_a = 1.9 \text{ V}$ et $E_c = 0.0 \text{ V}$

$$U_e = 1,9 V$$

7. Dans les conditions retenues, le potentiel d'équilibre du couple H⁺ / H₂ s'exprime selon E_{eq} (H^+/H_2) = -0,06 pH Volt

Pour la solution d'acide chlorhydrique, pH = $-\log C/C^{\circ} = 0$, soit $E_{eq}(H^{+}/H_{2}) = 0.0 \text{ V}$

$$E_{eq} (H^+/H_2) = 0.0 V$$

De même pour e couple O_2 / H_2O : $E_{eq} (O_2 / H_2O) = 1,23 - 0,06 \text{ pH Volt}$

A pH = 0
$$E_{eq} (O_2/H_2O) = 1,23 V$$

8. pour chacune des courbes, on détermine sur le graphe la valeur de E_C et E_A

Electrode	Pt	Cu	С
E _C	0	- 0,38 V	- 0,42 V
η_{seuil}	0	- 0,38 V	- 0,42 V

On privilégie la cathode correspondant à la valeur la plus faible (en valeur absolue) du surpotentiel : il s'agit du **Pt**

De même:

Electrode	Pt	Ti iridé
Ec	1,8 V	1,5
η_{seuil}	0,57 V	0,27 V

On privilégie l'anode correspondant à la valeur la plus faible du surpotentiel : il s'agit du **Ti iridé**

9. Le modèle Thevenin $\,$ montre que la courant I est une fonction affine de la tension $\,U_p$:

$$I = \frac{U_i - U_P}{r}$$

Ceci est vérifié dans la zone B.

La valeur de la résistance se déduit du coefficient directeur de la droite : $r = \frac{1}{coef directeur}$

Pt , 0.7 mgcm⁻²
$$r = (760 - 600) \cdot 10^{-3} / (2.75 - 0.9) = 0.09 \Omega$$

On privilégie le dispositif ayant la plus faible résistance interne.