Devoir à la maison n° 10

Exercice 1. On souhaite déterminer l'ensemble des fonctions $f:\mathbb{R}\to\mathbb{R}$ continues en 0 vérifiant l'équation :

$$(E): \quad \forall (x,y) \in \mathbb{R}^2, \ f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}.$$

- 1. Montrer qu'une telle fonction existe. On considère désormais une fonction f vérifiant (E). On note $g: x \mapsto f(x) f(0)$.
- 2. (a) Déterminer g(0) et montrer que g vérifie (E).
 - (b) En déduire que g vérifie (E'): $\forall x, y \in \mathbb{R}, \ g(x+y) = g(x) + g(y)$.
- 3. Soit $x_0 \in \mathbb{R}$.
 - (a) Montrer que : $\forall x \in \mathbb{R}, \ g(x x_0) = g(x) g(x_0).$
 - (b) En déduire que g est continue en x_0 .
- 4. On note a = g(1) puis $h: x \mapsto g(x) ax$.
 - (a) Montrer que h est 1-périodique et qu'elle admet un minimum m et un maximum M.
 - (b) Montrer que h vérifie (E').
 - (c) Soit $c \in \mathbb{R}$ tel que h(c) = M. En considérant h(x+c), montrer que h est négative.
 - (d) Montrer de même que h est positive. Conclure.

Exercice 2. On considère $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 . Soient $x \in \mathbb{R}$ et $\alpha > 0$.

- 1. Appliquer le théorème des accroissements finis à f entre x et $x+\alpha$.
- 2. En déduire qu'il existe $(c_1, c_2) \in]x, x + \alpha[^2$ tel que $\frac{f(x+\alpha) f(x)}{\alpha} f'(x) = f''(c_2)(c_1 x)$.
- 3. On suppose dans la suite que f est bornée par un réel M_0 et que f'' est bornée par un réel M_2 . Montrer que f' est bornée par $\frac{2M_0}{\alpha} + \alpha M_2$.
- 4. En étudiant la fonction $g: x \mapsto \frac{2M_0}{x} + xM_2$, déterminer k > 0 tel que f' est bornée par $k\sqrt{M_0M_2}$.