Devoir à la maison n° 8 Corrigé

Exercice 1.

1. (a) Comme la suite (u_n) converge vers 0, il existe N dans \mathbb{N} tel que : $\forall n \geq N, |u_n| \leq \varepsilon$.

De plus :
$$\forall n \ge N, \ v_n = \frac{1}{n} \sum_{k=1}^n u_k = \frac{1}{n} \sum_{k=1}^N u_k + \frac{1}{n} \sum_{k=N+1}^n u_k.$$

Par conséquent, par inégalité triangulaire :

$$\forall n \ge N, \quad |v_n| \le \frac{1}{n} \sum_{k=1}^N |u_k| + \frac{1}{n} \sum_{k=N+1}^n |u_k| \le \frac{1}{n} \sum_{k=1}^N |u_k| + \frac{1}{n} \sum_{k=N+1}^n \varepsilon,$$

d'où l'inégalité voulue.

(b) Soit $\varepsilon'>0$. On cherche N' tel que : $\forall n\geq N',\ |v_n|\leq \varepsilon'$. Comme l'assertion de la question précédente a été démontrée pour $\varepsilon>0$ arbitraire, elle est vraie pour tout $\varepsilon>0$. Posons donc $\varepsilon=\frac{\varepsilon'}{2}$, soit $N\in\mathbb{N}$ correspondant.

Notons $c = \sum_{k=1}^{N} |u_k|$. C'est une constante, donc la suite $\left(\frac{c}{n}\right)$ converge vers 0. Soit donc $N_1 \in \mathbb{N}$ tel que $\left|\frac{c}{n}\right| \le \varepsilon$. Posons finalement $N' = \max(N, N_1)$, alors :

$$\forall n \ge N', \quad |v_n| \le \varepsilon + \frac{n-N}{n} \varepsilon \le 2\varepsilon = \varepsilon'.$$

La suite (v_n) est donc convergente vers 0.

2. Comme la suite (u_n) converge vers l, la suite (x_n) converge vers 0, donc, d'après la question 1., la suite (y_n) de terme général $y_n = \frac{x_1 + \ldots + x_n}{n}$ converge également vers 0. Or :

$$\forall n \in \mathbb{N}, \quad y_n = \frac{(u_1 - l) + \ldots + (u_n - l)}{n} = v_n - l,$$

donc la suite $(v_n - l)$ converge vers 0, donc la suite (v_n) converge vers l.

Remarque : Cette propriété est connue sous le nom de lemme de Cesàro. La suite (v_n) est appelée moyenne de Cesàro de la suite (u_n) .

3. Pour tout n dans \mathbb{N}^* , $v_n = \frac{\frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n}}{n}$, donc la suite (v_n) est de la forme précédente avec $(u_n) = \left(\frac{1}{n}\right)_{n \in \mathbb{N}^*}$. Comme (u_n) converge vers 0, (v_n) également d'après la propriété démontrée.

Exercice 2. Soit n dans \mathbb{N}^* .

1. La fonction f_n est dérivable sur \mathbb{R} comme somme de fonctions usuelles dérivables et :

$$\forall x \in \mathbb{R}, \ f_n'(x) = e^x + 1 > 0,$$

donc la fonction est strictement croissante sur \mathbb{R} . De plus f_n est continue car dérivable donc, d'après le théorème de la bijection monotone, f_n réalise une bijection de \mathbb{R} dans $f_n(\mathbb{R}) = \left[\lim_{x \to -\infty} f_n(x), \lim_{x \to +\infty} f_n(x)\right] = \mathbb{R}$. En particulier, 0 a donc exactement un antécédent par f_n .

2. Soit $n \in \mathbb{N}$. Comme $f_{n+1}(x_{n+1}) = 0$, on a $e^{x_{n+1}} + x_{n+1} = n+1$, donc:

$$f_n(x_{n+1}) = e^{x_{n+1}} + x_{n+1} - n = (n+1) - n = 1.$$

Comme $f_n(x_n) = 0$ et que la fonction f_n est strictement croissante, on a donc $x_n < x_{n+1}$. La suite (x_n) est donc croissante, donc tend vers une limite finie l ou vers $+\infty$. Si elle converge vers l, alors $(e^{x_n} + x_n)$ converge vers $e^l + l$, ce qui est absurde puisque c'est la suite (n). Donc (x_n) tend vers $+\infty$.

- 3. Comme $f_n(0) = 1 n \le 0$ et que $f_n(\ln n) = \ln n > 0$, et comme f_n est strictement croissante : $0 \le x_n < \ln n$. Par conséquent, $0 \le \frac{x_n}{n} < \frac{\ln n}{n}$, donc par encadrement, $\left(\frac{x_n}{n}\right)$ converge vers 0. Donc $\ln \left(1 \frac{x_n}{n}\right) \underset{n \to +\infty}{\sim} -\frac{x_n}{n}$. Or : $\forall n \ge 2, 0 \le \frac{x_n}{n \ln n} < \frac{1}{n}$, donc par encadrement $\frac{x_n}{n \ln n} \underset{n \to +\infty}{\longrightarrow} 0$, donc $\frac{x_n}{n} = \underset{n \to +\infty}{o} (\ln n)$. Donc $\ln \left(1 \frac{x_n}{n}\right) = \underset{n \to +\infty}{o} (\ln n)$.
- 4. Comme $f_n(x_n)=0$, on a $e^{x_n}=n-x_n$, donc $x_n=\ln(n-x_n)=\ln(n)+\ln\left(1-\frac{x_n}{n}\right)$. D'après la question précédente, on a donc $x_n=\ln(n)+\mathop{o}\limits_{n\to+\infty}(\ln n)$, c'est-à-dire $x_n\underset{n\to+\infty}{\sim}\ln n$.
- 5. D'après la question précédente, on a $y_n = \ln\left(1 \frac{\ln(n) + y_n}{n}\right)$.

On sait également que $y_n = \underset{n \to +\infty}{o} (\ln n)$, donc $\frac{\ln(n) + y_n}{n} \underset{n \to +\infty}{\longrightarrow} 0$, donc :

$$y_n \underset{n \to +\infty}{\sim} -\frac{\ln(n) + y_n}{n} \underset{n \to +\infty}{\sim} -\frac{\ln n}{n}.$$

Remarque : On a donc établi le développement asymptotique suivant :

$$x_n = \ln(n) - \frac{\ln(n)}{n} + \underset{n \to +\infty}{o} \left(\frac{\ln(n)}{n}\right).$$