Feuille d'exercices 11

ÉLÉMENTS DE CORRECTION

- Exercice 4. (d) La suite (u_n) est récurrente linéaire d'ordre 2. L'équation caractéristique associée est : $r^2=r-1$, c'est-à-dire $r^2-r+1=0$, a pour discriminant $\Delta=-3$, donc pour solutions $r_{1,2}=\frac{1\pm i\sqrt{3}}{2}$. Il existe donc $\lambda,\mu\in\mathbb{R}$ tels que : $\forall n\in\mathbb{N},\ u_n=\lambda\left(\frac{1+i\sqrt{3}}{2}\right)^n+\mu\left(\frac{1-i\sqrt{3}}{2}\right)^n$. De plus : $\begin{cases} u_0=\lambda+\mu=2\\ u_1=\lambda\left(\frac{1+i\sqrt{3}}{2}\right)+\mu\left(\frac{1-i\sqrt{3}}{2}\right)=-2 \end{cases} \text{ donc } \begin{cases} \lambda+\mu=2\\ (\lambda-\mu)\frac{\sqrt{3}}{2}=3i \end{cases} \text{ donc } \begin{cases} \lambda+\mu=2\\ \lambda-\mu=2\sqrt{3}i \end{cases}$ donc $\begin{cases} \lambda=1+i\sqrt{3}\\ \mu=1-i\sqrt{3} \end{cases}$. Donc : $\forall n\in\mathbb{N},\ u_n=\frac{(1+i\sqrt{3})^{n+1}-(1-i\sqrt{3})^{n+1}}{2^n}$.
- (e) La suite (u_n) est récurrente linéaire d'ordre 2. L'équation caractéristique associée est : $r^2=6r-9$, c'est-à-dire $(r-3)^2=0$, de solution double $r_0=3$. Il existe donc $\lambda,\mu\in\mathbb{R}$ tels que : $\forall n\in\mathbb{N},\ u_n=(\lambda n+\mu)\times 3^n$. De plus : $\begin{cases} u_0=\mu=1\\ u_1=3(\lambda+\mu)=1 \end{cases} \text{ donc } \begin{cases} \mu=1\\ \lambda=\frac{1}{3}-\mu=-\frac{2}{3} \end{cases}, \text{ donc } : \forall n\in\mathbb{N},\ u_n=\left(1-\frac{2n}{3}\right)\times 3^n.$
- (f) La suite (u_n) est récurrente linéaire d'ordre 2. L'équation caractéristique associée est : $r^2 = -r 2$, c'est-à-dire $r^2 + r + 2 = 0$, de discriminant $\Delta = -7$, donc de solution double $r_{1,2} = \frac{-1 \pm i\sqrt{7}}{2}$. Il existe donc $\lambda, \mu \in \mathbb{R}$ tels que : $\forall n \in \mathbb{N}, \ u_n = \lambda \left(\frac{-1 + i\sqrt{7}}{2}\right)^n + \mu \left(\frac{-1 i\sqrt{7}}{2}\right)^n$. De plus : $\begin{cases} u_0 = \lambda + \mu = 0 \\ u_1 = \lambda \left(\frac{1 + i\sqrt{7}}{2}\right) + \mu \left(\frac{1 i\sqrt{7}}{2}\right) = 2 \end{cases} \text{ donc } \begin{cases} \lambda + \mu = 0 \\ (\lambda \mu)\frac{\sqrt{7}}{2} = -2i \end{cases} \text{ donc } \begin{cases} \lambda + \mu = 0 \\ \lambda \mu = -\frac{4}{\sqrt{7}}i \end{cases}$ donc $\begin{cases} \lambda = -\frac{2}{\sqrt{7}}i \\ \mu = +\frac{2}{\sqrt{7}}i \end{cases}. \text{ Donc } : \forall n \in \mathbb{N}, \ u_n = -\frac{2}{\sqrt{7}}i \left(\frac{-1 + i\sqrt{7}}{2}\right)^n + \frac{2}{\sqrt{7}}i \left(\frac{-1 i\sqrt{7}}{2}\right)^n.$

Exercice 5.

(c) Comme $h(\mathbb{R}_+^*) = [2, +\infty[\subset \mathbb{R}_+^*, (w_n)]$ est bien définie. On a : $\forall x > 0, h(x) > x$, donc la suite (w_n) est croissante. Comme h n'a pas de point fixe, la suite (w_n) diverge donc vers $+\infty$.

Exercice 8.

(d) Soit $A \in \mathbb{R}$. On cherche $N \in \mathbb{N}$ tel que : $\forall n \geq N, \ -2\sqrt[3]{n} \leq A$. On a :

$$-2\sqrt[3]{n} \le A \Leftrightarrow \sqrt[3]{n} \ge -\frac{A}{2} \Leftrightarrow n \ge -\frac{A^3}{8}.$$

 $\text{Donc } N = \max\left(0, -\lceil\frac{A^3}{8}\rceil\right) \text{ convient. Donc } \left(-2\sqrt[3]{n}\right)_{n \in \mathbb{N}} \text{ tend vers } -\infty.$

Exercice 9.

(c) Soit $l \in \mathbb{R}$. Prenons $\varepsilon = 1$. Soit $N \in \mathbb{N}$, on cherche $n \geq N$ tel que $|u_n - l| > 1$. Notons A = l - 1. Comme (u_n) tend vers $-\infty$, il existe $N' \in \mathbb{N}$ tel que : $\forall n \geq N', u_n < A$. Donc : $\forall n \geq N', |u_n - l| > 1$. Donc $n = \max(N, N')$ convient. Donc (u_n) diverge.

Exercice 11. Soit $\lambda > 0$. Soit $A \in \mathbb{R}$. Soit $N \in \mathbb{N}$ tell que : $\forall n \geq N, \ u_n \geq \frac{A}{\lambda}$. Alors : $\forall n \geq N, \ \lambda u_n \geq A$. Donc $\lambda u_n \xrightarrow[n \to +\infty]{} +\infty$.

De même : soit $\lambda < 0$. Soit $A \in \mathbb{R}$. Soit $N \in \mathbb{N}$ tel que : $\forall n \geq N, \ u_n \geq \frac{A}{\lambda}$. Alors : $\forall n \geq N, \ \lambda u_n \leq A$. Donc $\lambda u_n \xrightarrow[n \to +\infty]{} -\infty$.

Si $\lambda = 0$, la suite (λu_n) est trivialement nulle.

Exercice 12. Soit $m, M \in \mathbb{R}$ tels que : $\forall n \in \mathbb{N}, m \leq u_n \leq M$.

 $\operatorname{Si} v_n \underset{n \to +\infty}{\longrightarrow} +\infty : \operatorname{soit} A \in \mathbb{R}. \operatorname{Soit} N \in \mathbb{N} \operatorname{tel que} \forall n \geq N, \ v_n \geq A - m. \operatorname{Alors} : \forall n \geq N, \ u_n + v_n \geq A.$ Donc $u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$.

 $\mathrm{Si}\,v_n\underset{n\to+\infty}{\longrightarrow}0:\mathrm{soit}\,\varepsilon>0.\,\mathrm{Soit}\,N\in\mathbb{N}\,\mathrm{tel}\,\mathrm{que}\,\forall n\geq N,\ |v_n|\leq\frac{\varepsilon}{\max(|m|,|M|)}.\,\mathrm{Alors}:\forall n\geq N,\ |u_nv_n|\leq \varepsilon$ ε . Donc $u_n v_n \xrightarrow[n \to +\infty]{} 0$.

Exercice 13.

- (a) Soit $\varepsilon > 0$. Soit $N \in \mathbb{N}$ tel que : $\forall n \geq N, |u_n \ell| \leq \varepsilon$. Alors, d'après l'inégalité triangulaire renversée : $||u_n| - |\ell|| \le |u_n - \ell| \le \varepsilon$. Donc $(|u_n|)$ converge vers $|\ell|$.
- (b) Soit A < 0. Soit $N \in \mathbb{N}$ tel que : $\forall n \geq N, \ u_n \leq A$. Alors : $\forall n \geq N, \ |u_n| \geq |A|$. Donc $(|u_n|)$ tend vers $+\infty$.

Exercice 14. (e)
$$y_n = \frac{6^n}{3^n}(1 + \frac{1}{6^n})((\frac{1}{2})^n + 1)$$
, où $\frac{6^n}{3^n} = 2^n \xrightarrow[n \to +\infty]{} +\infty$, et $(1 + \frac{1}{6^n})((\frac{1}{2})^n + 1) \xrightarrow[n \to +\infty]{} 1$, donc $y_n \xrightarrow[n \to +\infty]{} +\infty$.

(f)
$$z_n = (2^n - 3^n)(n^2 - 6) = 3^n \times n^2 \times \left(\frac{2^n}{3^n} - 1\right) \left(1 - \frac{6}{n^2}\right)$$
, où $3^n \times n^2 \underset{n \to +\infty}{\longrightarrow} +\infty$, et $\left(\frac{2^n}{3^n} - 1\right) \left(1 - \frac{6}{n^2}\right) \underset{n \to +\infty}{\longrightarrow} -1$, donc $z_n \underset{n \to +\infty}{\longrightarrow} -\infty$.

- Exercice 17. (e) $\frac{n-1}{2+1} \le y_n \le \frac{n+1}{2-1}$. Or $\frac{n-1}{2+1} \xrightarrow[n \to +\infty]{} +\infty$ donc, d'après le théorème de divergence par minoration,
- (f) $\frac{n^3-1}{n^2+1} \le z_n \le \frac{n^3+1}{n^2+1}$. Or $\frac{n^3-1}{n^2+1} \xrightarrow[n \to +\infty]{} +\infty$ donc, d'après le théorème de divergence par minora-

Exercice 19. (c) On a : $\forall n \in \mathbb{N}^*$,

•
$$u_{n+1} - u_n = \frac{1}{\sqrt{n+1}} - 2\sqrt{n+1} + 2\sqrt{n} = \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n+1} + \sqrt{n}}$$

= $\frac{\sqrt{n} - \sqrt{n+1}}{\sqrt{n+1}(\sqrt{n+1} + \sqrt{n})} < 0$,

•
$$v_{n+1} - v_n = \frac{1}{\sqrt{n+1}} - 2\sqrt{n+2} + 2\sqrt{n+1} = \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n+2} + \sqrt{n+1}}$$

= $\frac{\sqrt{n+2} - \sqrt{n+1}}{\sqrt{n+1}(\sqrt{n+1} + \sqrt{n+2})} > 0$,

•
$$u_n - v_n = 2\sqrt{n+1} - 2\sqrt{n} = \frac{2}{\sqrt{n+1} + \sqrt{n}} \xrightarrow[n \to +\infty]{} 0,$$

donc (u_n) et (v_n) sont adjacentes.

Exercice 21.

- (a) Immédiat (cf exo 11)
- (b) C'est le théorème de divergence par minoration.
- (c) D'après la formule du binôme de Newton : $(1+a)^n \ge 1 + \binom{n}{1}a = 1 + an$.
- (d) Notons q=1+a (c'est-à-dire a=q-1>0). Alors : $q^n=(1+a)^n\geq 1+an$ d'après (c) et, d'après (a), (an) tend vers $+\infty$ donc, d'après (b), (q^n) tend vers $+\infty$.

Exercice 22. Comme π admet une infinité de décimales, il existe au moins un chiffre $k \in [0, 9]$ qui apparaît une infinité de fois dans la suite (u_n) (en fait, comme π est irrationnel, il en existe au moins deux). Donc (u_n) admet comme sous-suite la suite constante égale à k, qui est convergente.

Exercice 26.

(e)
$$y_n = \frac{e^{n^2} + e^{-n^2}}{2} \underset{n \to +\infty}{\sim} \frac{e^{n^2}}{2}$$
,

(f) Comme
$$\frac{(-1)^n}{\sqrt{n}} \xrightarrow[n \to +\infty]{} 0, z_n \underset{n \to +\infty}{\sim} \frac{(-1)^n}{2\sqrt{n}}.$$

Exercice 27.

(e)
$$y_n = 2n\left(\sqrt{1+\frac{1}{4n}}-1\right) \underset{n\to+\infty}{\sim} 2n \times \frac{1}{8n} = \frac{1}{4}$$
, donc $y_n \underset{n\to+\infty}{\longrightarrow} \frac{1}{4}$,

(f)
$$z_n = \frac{n^3 \ln\left(\frac{n+1}{n}\right) + n}{n+1} \underset{n \to +\infty}{\sim} n^2 \ln\left(1 + \frac{1}{n}\right) \underset{n \to +\infty}{\sim} n$$
, donc $z_n \underset{n \to +\infty}{\longrightarrow} +\infty$.