Feuille d'exercices 6

ÉLÉMENTS DE CORRECTION

Exercice 2.

(b) Notons
$$B = \bigcap_{n \in \mathbb{N}^*} \left[-1 - \frac{1}{n}, 1 + \frac{1}{n} \right[.$$

Pour tout $n \in \mathbb{N}^*$, $[-1,1] \subset \left[-1-\frac{1}{n},1+\frac{1}{n}\right[$, donc $[-1,1] \subset B$.

Réciproquement, soit $x \in \vec{B}$, montrons que $x \in [-1,1]$. Supposons par l'absurde que |x| > 1, alors il existe $N \in \mathbb{N}^*$ tel que $|x| > 1 + \frac{1}{N}$: tout entier $N > \frac{1}{|x|-1}$ convient. Donc $x \notin \mathbb{N}$

Exercice 3.

(d) Si B = C, il est trivial que $A \cup B = A \cup C$ et $A \cap B = A \cap C$.

Réciproquement, supposons $A \cup B = A \cup C$ et $A \cap B = A \cap C$. Soit $x \in B$, montrons que $x \in C$. Comme $x \in B$, $x \in A \cup B$, donc $x \in A \cup C$, donc $x \in C$ ou $x \in A$. Dans ce second cas, $x \in A \cap B$, donc $x \in A \cap C$, donc $x \in C$. Dans tous les cas, $x \in C$. Donc $B \subset C$.

De la même façon (le problème étant symétrique), $C \subset B$, donc B = C.

Donc $(A \cup B = A \cup C, A \cap B = A \cap C) \Leftrightarrow (B = C).$

- (e) Soit $x \in E$. Alors $x \in (A \setminus B) \cup (A \setminus C)$ si et seulement si $(x \in A \text{ et } x \notin B \text{ ou } x \notin C)$, c'est-à-dire, d'après les lois de De Morgan, que $(x \in A \text{ et } x \notin B \cap C)$; c'est-à-dire que $x \in A \setminus (B \cap C)$. Donc $(A \setminus B) \cup (A \setminus C) = A \setminus (B \cap C)$.
- (f) On utilise l'identité : $A \setminus B = A \cap \overline{B}$:

$$(A \setminus B) \setminus (A \setminus C) = (A \cap \overline{B}) \cap \overline{A \cap \overline{C}} = (A \cap \overline{B}) \cap (\overline{A} \cup C) = A \cap \overline{B} \cap C = A \cap C \cap \overline{B} = (A \cap C) \setminus B.$$

Exercice 4.

- (a) Supposons que $E \subset F$, montrons que $\mathcal{P}(E) \subset \mathcal{P}(F)$. Soit $A \in \mathcal{P}(E)$, c'est-à-dire $A \subset E$. Alors, comme $E \subset F$, $A \subset F$, donc $A \in \mathcal{P}(F)$. Donc $\mathcal{P}(E) \subset \mathcal{P}(F)$.
 - Réciproquement, supposons que $\mathcal{P}(E) \subset \mathcal{P}(F)$, montrons que $E \subset F$. Soit $x \in E$, alors $\{x\} \in \mathcal{P}(E)$, donc, comme $\mathcal{P}(E) \subset \mathcal{P}(F)$, $\{x\} \in \mathcal{P}(F)$. Donc $x \in F$. Donc $E \subset F$.

Donc $E \subset F \Leftrightarrow \mathcal{P}(E) \subset \mathcal{P}(F)$.

(b) Soit $A \subset E$:

 $A \in \mathcal{P}(E \cap F) \Leftrightarrow A \subset E \cap F \Leftrightarrow (A \subset E \text{ et } A \subset F) \Leftrightarrow (A \in \mathcal{P}(E) \text{ et } A \in \mathcal{P}(F)) \Leftrightarrow (A \in \mathcal{P}(E) \cap \mathcal{P}(F)),$ donc $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cap \mathcal{P}(F).$

(c) Non : Avec $E = \{1, 2\}$, $F = \{3, 4\}$ et $A = \{1, 3\}$: $A \in \mathcal{P}(E \cup F)$ mais $A \notin \mathcal{P}(E) \cup \mathcal{P}(F)$. Plus généralement : on a toujours $\mathcal{P}(E) \cup \mathcal{P}(F) \subset \mathcal{P}(E \cup F)$, mais l'inclusion réciproque est fausse en général.

Exercice 5.

- (a) Si $A \not\subset B$, alors : $\forall X \subset E, X \cup A \not\subset B$, donc $S = \emptyset$. Si $A \subset B$, soit $X \subset E : X \cup A \subset B$ si et seulement si $B \setminus A \subset X$. Donc $S = \{X \in E \mid B \setminus A \subset X \subset B\}$.
- (b) Si $B \not\subset A$, alors : $\forall X \subset E$, $B \not\subset X \cap A$, donc $S = \emptyset$. Si $B \subset A$, soit $X \subset E$: $X \cap A = B$ si et seulement si $B \subset X \subset \overline{A} \cup B$. Donc $S = \{X \in E \mid B \subset X \subset \overline{A} \cup B\}$.

Exercice 9.

Comme i(1,0) = i(1,1) = (1,0), i n'est pas injective.

Soit $(a, b) \in \mathbb{R}^2$, alors (a, b) a pour antécédent par i le couple (a, c) où c est un antécédent de b par la fonction $y \mapsto ay - y^3$ (surjective de \mathbb{R} dans \mathbb{R} car polynomiale de degré impair). Donc i est surjective.

Exercice 11. Soient $A, B \subset E$. On a toujours : $f(A \cap B) \subset f(A) \cap f(B)$ (car $f(A \cap B) \subset f(A)$ et $f(A \cap B) \subset f(B)$).

Supposons f injective. Soient $A, B \subset E$. Soit $y \in f(A) \cap f(B)$. Alors il existe $a \in A$ tel que y = f(a) et $b \in B$ tel que y = f(b). Comme f est injective, a = b, donc $a \in A \cap B$, donc $y \in f(A \cap B)$. Donc $f(A) \cap f(B) \subset f(A \cap B)$, donc $f(A \cap B) = f(A) \cap f(B)$.

Réciproquement, supposons que : $\forall A, B \in \mathcal{P}(E), \ f(A \cap B) = f(A) \cap f(B)$. Soient $x, y \in E$ tels que f(x) = f(y). Si $x \neq y$, alors $\{x\} \cap \{y\} = \emptyset$, donc $f(\{x\} \cap \{y\}) = f(\emptyset) = \emptyset \neq f(\{x\}) \cap f(\{y\}) = \{f(x)\}$, ce qui est absurde. Donc x = y. Donc f est injective.

Exercice 12. Supposons qu'il existe $f: E \to F$ injective. Alors toute application $g: F \to E$ vérifiant, pour tout $y \in f(E)$, g(y) = x où x est l'unique antécédent de y par f, est surjective. Inversement, supposons qu'il existe $g: F \to E$ surjective. Alors toute application $f: E \to F$ définie par : $\forall x \in E$, f(x) = y où y est un antécédent de x par g, est injective.

Exercice 13.

- (a) Supposons par exemple f injective. Soient $x_1, x_2 \in E$ tels que $h(x_1) = h(x_2)$. Alors $(f(x_1), g(x_1)) = (f(x_2), g(x_2))$ donc en particulier $f(x_1) = f(x_2)$ donc, comme f est injective, $x_1 = x_2$. Donc h est injective.
- (b) Non en général. Par exemple si $E = F = G = \{0,1\}$ et $f = g = \mathrm{Id}_E$, alors h(0) = (0,0) et h(1) = (1,1), donc $(0,1) \in F \times G$ n'a pas d'antécédent par h. Donc h n'est pas surjective.