Bellevue

Colles Chimie, semaine 11, 9-13 Décembre

Phénomènes d'osmose

Osmose, osmose inverse et pression osmotique

Programme PC 2ème année

	Capacités exigibles
Osmose, pression osmotique d'une solution	Utiliser le potentiel chimique pour interpréter le transfert d'un
	solvant au travers d'une membrane.
	Relier la pression osmotique à la différence de potentiel
	chimique du solvant dans les deux phases.

Structure des entités moléculaires

-Révisions PCSI- PC 1^{ère} année : Modèle de Lewis , modèle VSEPR , modèle de la mésomérie (structure de Lewis , géométrie autour d'un atome et géométrie d'une molécule , moment dipolaire d'une liaison , d'une molécule)

- Modèle quantique

Approximations ,notions d'OM et de recouvrement Interactions entre 2 OA $Symétrie \ \sigma \ ou \ \pi \ \ , caractère \ liant \ ou \ anti-liant$

- ① Diagramme des OM pour A_2 sans interaction s-p Indice ou ordre de liaison , propriétés par ou diamagnétiques , etat de spin , HO , BV et SO : $\underline{\textbf{simplement}}$ les identifier
- ②Diagramme des OM pour AB, molécule diataomique hétéronucléaire.

Introduction à la réactivité des molécules organiques

-Familles fonctionnelles et groupes fonctionnels :

- Effets électroniques

Effet inductifs et effets mésomères

- les différents types d'espèces : Acides et bases de Lewis / Nucléophiles et Electrophiles
- Les deux modèles d'interprétation de la réactivité : modèle de contrôle de charges et modèle de contrôle frontalier

Programme PC 1ère année

Notions et contenus	Capacités exigibles
Modèle de Lewis de la liaison covalente	Citer l'ordre de grandeur de longueurs et d'énergies de liaison
Liaison covalente localisée ; longueur et energie	covalente.
de la liaison covalente.	Determiner, pour les élements des blocs s et p, le nombre d'electrons
Schema de Lewis d'une molécule ou d'un ion	de valence d'un atome a partir de la position de l'élément dans le
monoatomique ou polyatomique (étude limitée	tableau periodique.
aux éléments des blocs s et p)	Citer les élements des périodes 1 a 3 du tableau périodique (nom,
_	symbole, numéro atomique).

	Etablir un ou des schémas de Lewis pertinent(s) pour une molécule
	ou un ion.
Liaison covalente délocalisée : mésomerie	Identifier et représenter les enchainements donnant lieu a une
	délocalisation électronique.
	Mettre en évidence une éventuelle délocalisation électronique à partir
	de données expérimentales
Géométrie et polarité des entités chimiques	Associer qualitativement la geometrie d'une entite a la minimisation
Structure géometrique d'une molecule ou d'un ion polyatomique.	de son energie.
Modele VSEPR. Representation de Cram.	Prevoir et interpreter les structures de type AXn avec $n \le 4$ et
	AXpEq, avec $p+q = 3$ ou 4.
Electronegativite: liaison polarisee, moment	Comparer les electronegativites de deux atomes à partir de donnees
dipolaire, molecule polaire	ou de leurs positions dans le tableau periodique.
	Prevoir la polarisation d'une liaison a partir des électronégativités
	comparées des deux atomes mis en jeu.
	Relier l'existence ou non d'un moment dipolaire permanent a la
	structure géometrique d'une molécule.
	Déterminer direction et sens du vecteur moment dipolaire d'une
	liaison ou d'une molécule

Programme PC 2ème année

Notions et contenus	Capacités exigibles
Construction des orbitales moléculaires	-Identifier les conditions d'interaction de deux orbitales atomiques :
	recouvrement et critère énergétique.
Méthode de Combinaison Linéaire des	-Construire des orbitales moléculaires de molécules diatomiques par
Orbitales Atomiques.	interaction d'orbitales atomiques du même type (s-s, p-p).
	-Reconnaître le caractère liant, antiliant, non liant d'une orbitale
Interaction de deux orbitales atomiques sur	moléculaire à partir de sa représentation conventionnelle ou d'une
deux centres :	surface d'iso-densité.
- recouvrement ;	-Identifier la symétrie σ ou π d'une orbitale moléculaire à partir de sa
- orbitales liante, antiliante, non liante ;	représentation conventionnelle ou d'une surface d'iso-densité.
- énergie d'une orbitale moléculaire ;	-Proposer une représentation conventionnelle d'une orbitale
- orbitale σ , orbitale π ;	moléculaire tenant compte d'une éventuelle dissymétrie du système.
- représentation conventionnelle d'une orbitale moléculaire par	-Justifier la dissymétrie d'une orbitale moléculaire obtenue par
schématisation graphique de la combinaison linéaire des orbitales	interaction d'orbitales atomiques centrées sur des atomes d'éléments
atomiques.	différents.
	-Prévoir ou interpréter l'ordre énergétique des orbitales moléculaires
	et établir qualitativement un diagramme énergétique d'orbitales d'une molécule diatomique.
	molecule diatomique.
	-Justifier l'existence d'interactions entre orbitales de fragment en
Interaction d'orbitales de fragments.	termes de recouvrement ou d'écart d'énergie.
	-Décrire l'occupation des niveaux d'un diagramme d'orbitales
Diagramme d'orbitales moléculaires :	moléculaires.
occupation des niveaux, orbitales frontalières haute occupée et basse	-Identifier les orbitales frontalières à partir d'un diagramme
vacante, cas des entités radicalaires.	d'orbitales moléculaires de valence fourni.
	-Interpréter un diagramme d'orbitales moléculaires obtenu par
	interaction des orbitales de deux fragments, fournies.
Ordre de liaison dans les molécules diatomiques.	Relier, dans une molécule diatomique, l'évolution des caractéristiques
	de la liaison à l'évolution de l'ordre de liaison.

Familles fonctionnelles en chimie organique.

Aspects thermodynamiques et cinétiques des transformations de la matière en chimie organique.

Sites électrophiles et nucléophiles des réactifs.

Modélisation de la géométrie des approches des réactifs.

Identifier dans une entité donnée les familles fonctionnelles suivante : alcène, alcyne, halogénoalcane, alcool, ester sulfonique, 1,2-diol

, éther-oxyde, époxyde, hémiacétal, acétal, amine, aldéhyde, cétone, acide carboxylique, ester, amide, chlorure d'acyle, anhydride d'acide.

Discuter des aspects thermodynamiques et cinétiques des transformations effectuées à l'aide de données tabulées et de résultats expérimentaux.

Identifier les sites électrophiles et nucléophiles des réactifs à l'aide de leurs structures de Lewis ou de leurs orbitales frontalières.

Prévoir ou justifier la géométrie privilégiée d'approche de réactifs à partir de leurs orbitales frontalières fournies.

Prévision de la réactivité	Utiliser les orbitales frontalières pour prévoir la réactivité
Approximation des orbitales frontalières.	nucléophile ou électrophile d'une entité
	(molécule ou ion).
	Interpréter l'addition nucléophile sur le groupe carbonyle et la substitution nucléophile en termes d'interactions frontalières.
	Comparer la réactivité de deux entités à l'aide des orbitales
	frontalières.