Entraînement : Réduction (CCINP MP) (Corrigé)

Notations pour cet exercice:

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

On désigne, pour n entier naturel, $n \geq 2$:

- $M_n(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices carrées de taille n à coefficients dans \mathbb{K} .
- $D_n(\mathbb{R})$ le sous-espace vectoriel des matrices diagonales de $M_n(\mathbb{R})$.

Décomposition de Dunford

On admet le théorème suivant que l'on pourra utiliser librement :

Si A est une matrice de $M_n(\mathbb{K})$ telle que son polynôme caractéristique χ_A soit scindé sur \mathbb{K} , alors il existe un unique couple (D, N) de matrices de $M_n(\mathbb{K})$ vérifiant les quatre propriétés suivantes :

- (1) A = D + N;
- (2) D est diagonalisable dans $M_n(\mathbb{K})$ (pas nécessairement diagonale);
- (3) N est nilpotente;
- (4) DN = ND.

De plus, D et N sont des polynômes en A et $\chi_A = \chi_D$.

Le couple (D, N) s'appelle la décomposition de Dunford de A.

Partie I - Quelques exemples

Q1. Donner le couple de la décomposition de Dunford d'une matrice A de $M_n(\mathbb{K})$ lorsque A est diagonalisable, puis lorsque la matrice A de $M_n(\mathbb{K})$ est nilpotente.

Justifier qu'une matrice trigonalisable vérifie l'hypothèse du théorème, admettant ainsi une décomposition de Dunford.

Le couple de matrices $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ est-il la décomposition de Dunford de la matrice $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$?

- **Q2.** Donner un exemple d'une matrice de $M_2(\mathbb{R})$ n'admettant pas de décomposition de Dunford dans $M_2(\mathbb{R})$.
- **Q3.** Soit la matrice $A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$.

Calculer son polynôme caractéristique χ_A , puis donner le couple (D, N) de la décomposition de Dunford de A (on utilisera le fait que $\chi_A = \chi_D$).

Q4. Soit $A \in M_n(\mathbb{K})$ telle que $A^2(A - I_n) = 0_n$.

Justifier que X(X-1) est polynôme annulateur de A^2 et montrer que $(A^2, A-A^2)$ est le couple de la décomposition de Dunford de A.

Solution:

- 1)i) La matrice nulle étant diagonalisable, nilpotente et commute avec toute matrice donc le couple de la DDD de A est $(A, 0_n)$ si A est diagonalisable et $(0_n, A)$ si A est nilpotente (puisqu'il convient trivialement et qu'il est unique)
- ii) Il suffit de se souvenir que toute matrice trigonalisable (dans \mathbb{K}) possède un polynôme caractéristique scindé sur $\mathbb{K}\blacksquare$

iii) Non puisque
$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 alors que $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \blacksquare$

2) Il suffit proposer une matrice de $M_2(\mathbb{R})$ dont le polynôme caractéristique soit $X^2 + 1$ qui est le prototype du polynôme réel non scindé sur \mathbb{R} .

La matrice
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 convient en cela.

Mais cette matrice n'a-t-elle pas pour autant une DDD?

C'est à dire ne peut-on pas toute fois l'écrire A=D+N, avec D dz, N nilpotente et DN=ND? Supposons que ce soit le cas : par linéarité de la trace (celle d'une nilpotente est nulle) on a urait tr(A)=tr(D)=0 donc, par Cayley-Hamilton D^2 est scalaire. Or $A^2=D^2+2DN$ (car $N^2=0_2$ voir cours) ce qui entaîne que $-I^2-D^2$ est scalaire et non inversible donc que $A^2=D^2=-I^2$ puis $DN=0_2$ donc $N=0_2$ (car D inversible) soit A=D alors que A n'est pas diagonalisable. c'est absurde

3) En développant suivant la seconde colonne $\det(\lambda I_3 - A)$, il vient : $\chi_A = (\lambda + 1)^3$ donc on a affaire à un polynôme scindé sur $\mathbb R$ et A possède bien une (unique) DDD dont l'unique couple se note (D,N). Comme $\chi_D = \chi_A$, le spectre de D est constitué d'une seule valeur propre -1. Or D est dz donc semblable à une matrice diagonale dont les éléments diagonaux sont ses valeurs propres. Ce qui se résume ici à $D \sim -I_3 \iff D = -I_3$. Dès lors $N = A + I_3 \blacksquare$

4) On a $A^2(A^2 - I_n) = A^2(A - I_n)(A + I_n) = 0_n (A + I_n) = 0_n$ donc X(X - 1) est polynôme annulateur de A^2 ; celui-ci étant scindé sur \mathbb{R} et à racines simples : A^2 est diagonalisable. De plus $(A - A^2)^2 = A^2(A - I_n)(A - I_n) = 0_n$ ainsi $A - A^2$ est nilpotente et commute avec A^2 . Comme $A = A^2 + (A - A^2)$, le couple $A = A^2 + (A - A^2)$ est celui de la DDD de $A = A^2 + (A - A^2)$

Partie II - Un exemple par deux méthodes

Soit la matrice
$$A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
.

On note u l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice A. On notera Id l'application identité de \mathbb{R}^3 .

Q5. La matrice A est-elle diagonalisable dans $M_3(\mathbb{R})$? Démontrer qu'on a la somme directe : $\mathbb{R}^3 = Ker(u-Id) \oplus Ker(u-2Id)^2$.

Q6. Déterminer une base (e_1, e_2, e_3) de \mathbb{R}^3 telle que : $Ker(u - Id) = Vect\{e_1\}, Ker(u - 2Id) = Vect\{e_2\}, Ker(u - 2Id)^2 = Vect\{e_2, e_3\}.$ Ecrire la matrice B de u dans la base (e_1, e_2, e_3) de \mathbb{R}^3 .

- **Q7.** Déterminer le couple de la décomposition de Dunford de la matrice B et en déduire le couple (on calculera ces matrices) de la décomposition de Dunford de la matrice A.
- **Q8.** A l'aide de la division euclidienne de $(X-2)^2$ par X-1, trouver deux éléments de $\mathbb{R}[X]$ U et V tels que : $(X-1)U(X)+(X-2)^2V(X)=1$, où deg(U)<2 et deg(V)<1.
- **Q9.** On pose $p = V(u)o(u 2Id)^2$ et q = U(u)o(u Id). Déterminer p(x) + q(x) pour tout $x \in R^3$. Démontrer que p est le projecteur sur Ker(u - Id) parallèlement à $Ker(u - 2Id)^2$. Préciser de même les cractéristiques de q.
- **Q10.** On pose d = p + 2q. Ecrire la matrice de d dans la base (e_1, e_2, e_3) (de la question **Q6**). Déterminer le couple de la décomposition de Dunford de A en exprimant D et N comme polynômes de la matrice A(sous forme développée).

Solution:

5) On détermine les valeurs propres de u en calculant χ_A ; pour cela on ajoute C_2 à C_1 dans $det(\lambda I_3 - A)$

ce qui permet de mettre $(\lambda - 2)$ en facteur et donne $\chi_A = \lambda - 2$ $\begin{vmatrix} 1 & 1 & -1 \\ 1 & \lambda & -1 \\ 0 & 1 & \lambda - 2 \end{vmatrix}$.

On ajoute C_1 à C_3 et on développe alors suivant la dernière colonne pour obtenir : $\chi_A = (\lambda - 2)^2 (\lambda - 1)$ A (donc u) est sûrement trigonalisable puisque son polynôme caractéristique est scindé sur \mathbb{R} ; on voit aisément (écrire la matrice) que le rang de $A-2I_3$ vaut 2 donc que $dim(Ker(A-2I_3)=1\neq 2=m(2).$ Ainsi A et u ne sont pas diagonalisables.

Par ailleurs $\dim(Ker(u-Id)) + \dim(Ker(u-2Id)^2 \ge 1 + 2 = 3$.

Pour conclure il nous suffit de montrer que ces noyaux sont en somme directe. On prend donc x dans les deux noyaux d'où : u(x) = x et $u^2(x) - 4u(x) + 4x = 0_{\mathbb{R}^3}$ donc $x = 0_{\mathbb{R}^3}$ et la somme est bien directe

■

6) On détermine ces noyaux :

La juxtaposition des deux bases mises en évidence ci-dessus détermine (puisque les noyaux sont supplémentaires dans \mathbb{R}^3) une base de \mathbb{R}^3 (e_1, e_2, e_3) que l'on note b.

Dès lors $B=\begin{pmatrix}1&0&0\\0&2&1\\0&0&2\end{pmatrix}$. La dernière colonne vient du fait (utiliser la troisième colonne de A) que $u(e_3)=(1,1,2)=e_2+2e_3$

7) On pose alors $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et N = B - D, on vérifie que ND = DN = 2N et comme N est

nilpotente le couple (D,N) est bien le couple de Dunford de B.

Notons P la matrice de passage de la base canonique de \mathbb{R}^3 à la base (e_1, e_2, e_3) , on a donc P =

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ et } A = PBP^{-1} = PDP^{-1} + PNP^{-1}. \text{ Posant } \Delta = PDP^{-1} \text{ et } \Omega = PNP^{-1}, \text{ il vient que la}$$

première de ces matrices est dz (car semblable à une matrice diagonale), la seconde nilpotente (son carré est la matrice nulle) puis que ces matrices commutent puisque DN = ND et qu'enfin leur somme est égale à A. En résumé (Δ, Ω) est le couple de Dunford de A.

La matrice de passage de la base (e_1, e_2, e_3) à la base canonique est $P^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}$; on trouve

alors
$$\Omega = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 puis $\Delta = A - \Omega = \begin{pmatrix} 4 & -2 & 2 \\ 3 & -1 & 2 \\ 1 & -1 & 2 \end{pmatrix} \blacksquare$

8) La division euclidienne en question est : $(X-2)^2 = (X-1-1)^2 = (X-1)(X-3) + 1$.

Donc On pose U(X) = -X + 3 et V(X) = 1

9) Compte tenu de ce qui précède $\forall x \in \mathbb{R}^3$, p(x) + q(x) = x. Pour $x \in Ker(u - 2Id)^2$, $p(x) = 0_{\mathbb{R}^3}$, ce par définition de p.

Et pour $x \in Ker(u - Id)$, p(x) = x (cf réponse à Q5).

Comme ces deux noyaux sont supplémentaires dans \mathbb{R}^3 , p est bien le projecteur voulu.

Des calculs similaires montrent que q est le projecteur sur $Ker(u-2Id)^2$ et parallèlement à Ker(u-Id)10) On note Φ et Ψ les matrices respectives de p et q dans b. On a donc, par leurs caractéristiques géométriques précisées en 9), $\Phi = diaq(1,0,0)$ et $\Psi = diaq(0,1,1)$ donc la matrice de d dans la base b est $\Delta = diag(1,2,2)$.

Il résulte de ceci que $D = V(A)(A - 2I_3)^2 + 2u(A)(A - I_3) = -A^2 + 4A - 2I_3$ est une matrice diagonalisable.

La matrice $N = A - D = A^2 - 3A + 2I^3 = (A - I_3)(A - 2I_3)$ est alors nilpotente puisque $N^2 =$ $(A-I_3)\chi(A)=0_3$ (en utilisant le théorème de Cayley-Hamilton). Nous avons retrouvé le couple DDD de A

Partie III - Une preuve de l'unicité de la décomposition

Q11. Soit E un \mathbb{K} -espace vectoriel de dimension n.

Soient u et v deux endomorphismes diagonalisables de E qui commutent. On note $\lambda_1, \lambda_2, \ldots, \lambda_p$ les valeurs propres de u et pour tout $1 \le i \le p$, $E_{\lambda_i}(u)$ le sous-espace propre de u associé à la valeur propre λ_i .

Démontrer que tout sous-espace propre de u est stable par v.

En déduire 1 qu'il existe une base commune de diagonalisation pour u et v.

Pour tout $1 \le i \le p$, on pourra noter v_i l'endomorphisme induit par v sur $E_{\lambda_i}(u)$.

- **Q12.** Soient A et B deux matrices diagonalisables de $M_n(\mathbb{K})$ qui commutent. Démontrer que la matrice A-B est diagonalisable.
- **Q13.** Soient A et B deux matrices nilpotentes de $M_n(\mathbb{K})$ qui commutent, démontrer que la matrice A B est nilpotente.
- Q14. Déterminer les matrices de $M_n(\mathbb{K})$ qui sont à la fois diagonalisables et nilpotentes.
- **Q15.** Dans cette question, on admet, pour toute matrice carrée A de $M_n(\mathbb{K})$ à polynôme caractéristique scindé, l'existence d'un couple (D, N) vérifiant les conditions (1), (2), (3), (4) et tel que D et N soient des polynômes en A.

Etablir l'unicité du couple (D, N) dans la décomposition de Dunford.

Solution:

11) La première partie de la question et du cours.

Toujours par le cours chaque v_i ($1 \le i \le p$) est diagonalisable (puisque v l'est et que chaque $E_{\lambda_i}(u)$ est stable par v); notons b_i une base de diagonalisation de v_i et définissons b comme la concaténation de ces p familles.

Pour chaque i, b_i est constituée de vecteurs propres de u (car tous ces éléments sont dans $E_{\lambda_i}(u)$ et de v_i donc de v.

u étant dz, on a $E = \bigoplus_{i=1}^{p} E_{\lambda_i}(u)$ donc b est une base de E faite de vecteurs propres de u et de v

- 12) Il suffit de traduire matriciellement la question précédente. Notons u et v les endomorphismes canoniquement associés respectivement à A et B et notons P la matrice de passage de la base canonique à une base commune de diagonalisation pour u et v. Ceci signifie qu'il existe deux matrices diagonales D et D' de $M_n(\mathbb{K})$ telles que $A = PDP^{-1}$ et $B = PD'P^{-1}$. Dès lors $A B = P(D D')P^{-1}$; ce qui montre bien que A B est diagonalisable
- 13) Par le cours on sait que $A^n = B^n = 0_n$ donc que si $k \ge n$ alors $A^k = 0_n$ et si k < n alors $2n k \ge n$ donc $B^{2n-k} = 0_n$.

A et B commutant on peut utiliser le binôme de Newton pour évaluer les puisssances de A-B. Plus précisément : $(A-B)^{2n} = \sum_{k=0}^{2n} {2n \choose k} (-1)^k A^k B^{2n-k} = 0_n$ par la remarque précédente. A-B est bien

nilpotente

- 14) Il s'agit de la seule matrice nulle. Voir votre cours■
- 15) Donnons nous deux couples (D, N) et (D', N') de Dunford de la matrice A. On a donc D D' = N' N. Comme toutes ces matrices sont des polynômes en A, elles commutent deux à deux. Par ce qui précède (Q12 et Q13), D D' est donc à la fois dz et nilpotente donc nulle par Q14. Ainsi D = D' et donc N = N'

¹On admettra (sera vu mercredi matin) que la restriction à un sev stable d'un endomorphisme diagonalisable l'est encore.