Feuille d'exercices 3

ÉLÉMENTS DE CORRECTION

Exercice 2. Comme f_a est paire, la courbe de f a pour axe de symétrie l'axe x = a.

Comme f_b est impaire, la courbe de f a pour centre de symétrie le point (b, 0).

Notons $\delta = b - a$. La courbe de f a alors pour axe de symétrie « inversé » l'axe $x = b + \delta$, puis pour centre de symétrie « inversé » le point $(b + 2\delta, 0)$, puis pour axe de symétrie « non inversé » l'axe $x = b + 3\delta$. La fonction f est ainsi périodique de période $b + 3\delta - a = 4\delta = 4(b - a)$.

Exercice 3. La courbe de g est obtenu à partir de celle de f par dilatation de facteur -1 verticalement (c'està-dire par symétrie selon l'axe Ox) puis par translation de 2 unités verticalement.

Exercice 8. On procède par analyse-synthèse. Supposons qu'il existe f solution. On dérive selon x: $\forall (x,y) \in \mathbb{R}^2$, f'(x+y)=f'(x). Par conséquent, f' est constante, donc f est affine. Soient $a,b \in \mathbb{R}$ tels que f(x)=ax+b. Alors: $\forall (x,y) \in \mathbb{R}^2$, a(x+y)+b=ax+b+ay+b, donc 2b=b, donc b=0. Donc f est linéaire. Réciproquement, si f est linéaire, alors f est solution.

Exercice 9.

- (a) Supposons f paire. Alors : $\forall x \in \mathbb{R}$, f(-x) = f(x), donc, en dérivant : -f'(-x) = f'(x), donc f' est impaire.
 - La réciproque est vraie : supposons f' impaire, alors : $\forall x \in \mathbb{R}, \ f'(-x) = -f'(x)$, donc f(-x) = f(x) + c. En particulier, f(0) = f(0) + c, donc c = 0, donc f est paire.
- (b) Supposons f impaire. Alors : $\forall x \in \mathbb{R}, \ f(-x) = -f(x)$, donc, en dérivant : -f'(-x) = -f'(x), donc f' est paire.

La réciproque est fausse, par exemple pour $f: x \mapsto x^3 + 1: f'$ est paire, mais f n'est pas impaire.

(c) À nouveau : $\forall x \in \mathbb{R}, f(x+T) = f(x),$ donc, en dérivant : f'(x+T) = f'(x), donc f' est T-périodique.

Exercice 10.

•
$$D_l = D_l' = \mathbb{R} \setminus \left(\frac{\pi}{4} + \frac{\pi}{2}\mathbb{Z}\right)$$
. $\forall x \in D_l', \ l'(x) = \frac{3\cos(x)\cos(2x) + 6\sin(x)\sin(2x)}{\cos^2(2x)}$.

•
$$D_m = \mathbb{R}, D'_m = \mathbb{R} \setminus \{1, 2\}. \ \forall x \in D'_m, \ m'(x) = \frac{2x - 3}{2\sqrt{|x^2 - 3x + 2|}} \text{ si } x \in]1, 2[, \frac{-2x + 3}{2\sqrt{|x^2 - 3x + 2|}} \text{ sinon.}$$

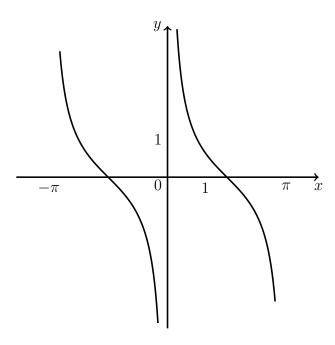
•
$$D_n = D'_n = \mathbb{R}^*_+$$
. $\forall x \in D'_n$, $n'(x) = (1 + \ln(x)) x^x$.

•
$$D_p = [0, 2[, D'_p =]0, 2[, \forall x \in D'_p, p'(x) = \frac{\frac{2-2x}{(2-x)^2}}{2\sqrt{\frac{x}{2-x}}} = \frac{(1-x)}{\sqrt{x}(2-x)^{\frac{3}{2}}}.$$

•
$$D_q = D_q' = \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$$
. $\forall x \in D_q', \ q'(x) = \left(\tan(x) + \frac{x}{\cos^2(x)}\right) e^{x \tan x}$.

•
$$D_r = D_r' =]0, e[\cup]e, +\infty[. \forall x \in D_r', r'(x) = \frac{2xe^{x^2}(\ln(x) - 1) - \frac{e^{x^2}}{x}}{(\ln(x) - 1)^2} = \frac{2x^2e^{x^2}(\ln(x) - 1) - e^{x^2}}{x(\ln(x) - 1)^2}.$$

Exercice 11. Notons $f = \cot n$. $D_f = D_f' = \mathbb{R} \setminus \pi \mathbb{Z}$. Comme f est π -périodique, on l'étudie sur $]0, \pi[$. $\forall x \in]0, \pi[$, $f'(x) = \frac{-\sin^2(x) - \cos^2(x)}{\sin^2(x)} = -\frac{1}{\sin^2(x)} < 0$, donc f est décroissante sur $]0, \pi[$. On a : $\lim_{x \to 0^+} f(x) = +\infty$ et $\lim_{x \to 0^+} f(x) = -\infty$.



Exercice 13.

- (a) Soit $f: x \mapsto \ln(1+x)$. La fonction f est définie sur $]-1, +\infty[$ et dérivable deux fois sur le même intervalle. On a : $\forall x > -1, \ f''(x) = -\frac{1}{(1+x)^2} < 0$, donc f est concave, donc est en-dessous de sa tangente en 0, à savoir la droite d'équation cartésienne y = f'(0)(x-0) + f(0) = x. Donc : $\forall x > -1, \ f(x) \le x$.
- (b) On applique la formule précédente à $x=\pm\frac{a}{n}>-1$: $\ln\left(1+\frac{a}{n}\right)\leq\frac{a}{n}$, $\operatorname{donc}\left(1+\frac{a}{n}\right)^n\leq e^a$, et de même $\ln\left(1-\frac{a}{n}\right)\leq-\frac{a}{n}$, $\operatorname{donc}e^a\leq\left(1-\frac{a}{n}\right)^{-n}$.

Exercice 14. $\forall x \in \mathbb{R}, \ f(x) = \frac{3}{4}\sin(x) - \frac{1}{4}\sin(3x), \ \operatorname{donc}\ f^{(n)}(x) = \frac{3}{4}\sin^{(n)}(x) - \frac{3^n}{4}\sin^{(n)}(3x).$ $\forall x \in \mathbb{R}_+^*, \ g'(x) = (n-1)x^{n-2}\ln(x) + x^{n-2}, \ g^{(2)}(x) = (n-1)(n-2)x^{n-3}\ln(x) + (2n-3)x^{n-3}, \ \operatorname{et\ plus\ g\'{e}n\'{e}ralement}: \forall k \leq n-1, \ \forall x \in \mathbb{R}_+^*, \ g^{(k)}(x) = a_k x^{n-1-k}\ln(x) + b_k x^{n-1-k}, \ \operatorname{avec}: a_0 = 1 \ \operatorname{et\ } b_0 = 0, \ \operatorname{et\ } : a_{k+1} = (n-1-k)a_k \ \operatorname{et\ } b_{k+1} = a_k + (n-1-k)b_k.$ On a alors: $\forall x \in \mathbb{R}_+^*, \ g^{(n)}(x) = \frac{(n-1)!}{x}, \ \operatorname{puis\ } : \forall k \geq n, \ \forall x \in \mathbb{R}_+^*, \ g^{(k)}(x) = (-1)^{k-n}\frac{(n-1)!(k-n)!}{x^{k-n+1}}.$

Exercice 16. $f: x \mapsto x + \sin(x)$ est usuellement dérivable sur \mathbb{R} , avec : $\forall x \in \mathbb{R}$, $f'(x) = 1 + \cos(x) \ge 0$, = 0 sur $\pi + 2\pi\mathbb{Z}$. Donc f' est strictement positive, sauf en des points isolés, donc f est strictement croissante sur \mathbb{R} . De plus f est continue (car dérivable), donc, d'après le théorème de la bijection monotone, f réalise une bijection de \mathbb{R} dans $f(\mathbb{R}) = \mathbb{R}$.

Exercice 20. Soit $y \in F$, soit $x = f^{-1}(y)$. Alors y = f(x), donc f(-x) = -f(x) = -y, donc $-x = f^{(-1)}(-y)$, donc $f^{(-1)}(-y) = -f^{-1}(y)$. Donc $f^{(-1)}$ est impaire. Dans le cas où f est paire, on a : $\forall x \in E$, f(-x) = f(x), donc, comme f est injective, x = -x, donc x = 0, donc $E = \{0\}$. Il existe donc $c \in \mathbb{R}$ tel que $f : \{0\} \to \{c\}$ (f est donc définie par f(0) = c). Sa réciproque (définie par $f^{(-1)}(c) = 0$) est alors impaire si et seulement si c = 0.