Colles Chimie, semaine 6, 16-20 Octobre

Programme de la semaine précédente : Modèle quantique de l'atome

1) Détermination des OA dans le cadre de la mécanique quantique : densité de probabilité de présence

Résultats pour l'atome d'hydrogène , nombres quantiques (n , l , m) , expression générale sous la forme $R_{n,l}$ (r) . $Y_{l,m}$ (θ , ϕ) , expression de l'énergie , E(n)

Résultats pour les espèces hydrogénoïdes

Résultats pour les atomes polyélectroniques : approximation orbitalaire (Zeff) , E (n , l)

Notion de rayon d'une orbitale, fonction densité radiale de probabilité de présence

Notion de région nodale, de phase, de plans de symétrie et d'antisymétrie.

Representations conventionnelles des OA s et p

2) Application : CEF d'un atome : principe d'exclusion de Pauli , règle de Klechkowski , règle de Hund

L'écriture d'une CEF doit être maitrisée et les règles doivent être enoncées de façon intelligible

Electrons de valence et de cœur

+

3) CEF d'un ion

4) Classification périodique:

Structure : périodes , colonnes , blocs , familles , éléments de transition , métaux et non métaux . Evolution périodique des propriétés : Z_{eff} , E_{val} , rayon atomique , électronégativité , polarisabilité

+

Thermodynamique chimique / Evolution des systèmes physico-chimiques

- Transfert thermique lors d'une transformation chimique réalisée à T et P fixées
- Température maximale atteinte lors d'une transformation chimique adiabatique

Programme 2ème année

Notions et continus	Capacités exigibles
Fonctions d'onde électroniques ψ de l'atome	Interpréter ψ ² comme la densité de probabilité de
d'hydrogène.	présence d'un électron en un point et la relier à la densité de
	charge.
Nombres quantiques n, l, ml, ms.	Prévoir qualitativement, pour l'atome d'hydrogène et les ions hydrogénoïdes, l'évolution du rayon et de l'énergie associés à
Énergie et rayon associés à une fonction d'onde.	une fonction d'onde en fonction du nombre quantique
Energie et rayon associes à une fonction à onde.	principal.
Orbitales des atomes polyélectroniques, représentation	Dessiner l'allure des orbitales atomiques s et p.
schématique.	,
Configuration électronique d'un atome et d'un ion	Établir la configuration électronique d'un atome
monoatomique.	ou d'un ion à l'état fondamental.
Électrons de coeur et de valence.	
	Déterminer le nombre d'électrons non appariés
	d'un atome dans son état fondamental
Notion qualitative de charge effective.	Relier qualitativement le rayon associé à une orbitale atomique
	à la charge effective.
Électronégativité.	Relier qualitativement l'énergie associée à une orbitale
	atomique à l'électronégativité de l'atome.
Rayon d'une orbitale atomique, polarisabilité	Relier qualitativement le rayon associé aux orbitales de valence
	d'un atome à sa polarisabilité.
Architecture du tableau périodique des éléments.	Relier la position d'un élément dans le tableau périodique à la
Organisation par blocs.	configuration électronique de
	l'atome associé dans son état fondamental
	Situer dans le tableau les familles suivantes :
	métaux alcalins et alcalino-terreux, halogènes et
	gaz nobles

Effets thermiques lors d'une transformation monobare :

- transfert thermique associé à la transformation chimique monobare monotherme ;
- variation de température lors d'une transformation monobare et adiabatique

Prévoir le sens et calculer la valeur du transfert thermique entre un système, siège d'une transformation physico chimique monobare et monotherme, et le milieu extérieur.

Évaluer la température atteinte par un système siège d'une transformation physico-chimique, monobare et adiabatique.

Déterminer une enthalpie standard de réaction.