Feuille de TD n°2 TD — Suites numériques

 $\boxed{\mathbf{1}} \ \ \text{On définit les suites} \ (u_n) \ \ \text{et} \ (v_n) \ \ \text{de la façon}$ suivante : pour tout $n \in \mathbb{N}$, $u_n = \frac{3n-4}{2n+1}$ et $v_0 = 1$ et $v_{n+1} = \frac{3u_n-4}{2u_n+1}.$

Calculer les quatre premiers termes des suites (u_n) et (v_n) .

- Soit (u_n) la suite définie par $u_n = n^2 n + 1$
- 1. Calculer u_0 et u_{10} .
- 2. Exprimer, en fonction de n, $u_n + 1$ et u_{n+1} .
- 3 Soit (u_n) la suite arithmétique de premier terme $u_0=4$ et de raison $r=\frac{1}{2}$.
 - 1. Exprimer u_n en fonction de n.
 - 2. Calculer u_{10} .
- 4 Soit (u_n) la suite géométrique de premier terme $u_0 = 7$ et de raison q = 3.
 - 1. Exprimer u_n en fonction de n.
 - 2. Calculer u_5 .
- $\boxed{\textbf{5}}$ On suppose que chaque année, la producion d'une usine subit une baisse de $4\,\%$.

Au cours de l'année 2000, la production a été de 25 000 unités.

- 1. On note $P_0=25000$ et P_n la production prévue au cours de l'année (2000+n). Montrer que (P_n) est une suite géométrique dont on précisera la raison.
- 2. Calculer la production de l'usine en 2023.
- 6 Soit (u_n) la suite arithmétique de premier terme $u_4=5$ et $u_{11}=19$.

Calculer la raison r et le premier terme u_0 .

7 Quelle forme choisir?

Une variété de bambou grandit de $6~\mathrm{cm}$ par jour. On achète dans un magasin un spécimen de $20~\mathrm{cm}$. On note u_n la taille du bambou au bout de n journées,

où n est un nombre entier.

- 1. Justifier que (u_n) est arithmétique et préciser le premier terme et la raison.
- 2. Donner l'écriture de son terme général.
- 3. Donner les quatre premiers termes de la suite (u_n) .
- 4. Calculer u_{84} .

8 algorithme

Écrire un programme en Python qui permet l'affichage des 10 premiers termes de la suite définie par

$$\begin{cases} u_0 = 20 \\ u_{n+1} = u_n + 6 \end{cases}$$

Écrire une fonction en Python qui permet de donner la valeur d'un terme choisi d'une suite arithmétique que l'on peut définir également. Par exemple la commande arith(20,6,84) renvoie la valeur u_{84} de la suite définie ci-dessus.

9 On considère la suite (u_n) définie par $u_0=2$ et pour tout $n\in\mathbb{N},\ u_{n+1}=\frac{3u_n-1}{u_n+1}.$

- 1. Calculer u_1 , u_2 et u_3 . Donner les valeurs exactes.
- 2. On pose pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{u_n 1}$
 - (a) Démontrer que (v_n) est une suite arithmétique
 - (b) En déduire une expression de v_n en fonction de n pour tout n entier.
 - (c) En déduire une expression de u_n en fonction de n.
- 3. Calculer u_{100}
- 4. Conjecturer la limite de la suite (u_n) .

- 1. Calculer u_2 , u_3 , u_4 et u_5 .
- 2. Démontrer que la suite de terme général $v_n = \frac{u_n}{n}$ est une suite géométrique.
- 3. En déduire l'expression de v_n en fonction de n puis celle de u_n .
- 11 (*)On considère la suite définie par $u_0 = a$ et la relation de récurrence

$$(R) u_{n+1} = \frac{1}{2}u_n + n^2 + n$$

- 1. Déterminer un polynôme P du second degré, de façon à ce que la suite de terme général $\alpha_n=P(n)$ vérifie la relation (R).
- 2. Montrer que la suite (v_n) définie par $v_n = u_n \alpha_n$ est une suite géométrique dont on précisera le premier terme et la raison.
- 3. Donner l'expression de v_n en fonction de n et de a, puis celle de u_n .

12 (**) Les singes et les noix de coco

« Le premier singe prit la moitié des noix de coco, plus une.

Le deuxième prit la moitié du reste plus deux Le troisième prit la moitié du reste plus trois...

Le $N^{\rm e}$ et dernier prit la moitié du reste précédent, plus N . »

Déterminer en fonction de N le nombre total x de noix de coco.

Utiliser le nombre restant de noix de cocos.

13

- 1. La suite (v_n) est définie pour tout $n \in \mathbb{N}$ par $v_n = (n-1)^3$
 - (a) Calculer les 3 premiers termes de la suite (v_n) . Que pourrait-on supposer?
 - (b) Démontrer que la suite \boldsymbol{v} n'est pas arithmétique.
- 2. La suite (u_n) est définie pour tout $n \in \mathbb{N}$ par $u_n = (n+3)^2 n^2 7$.

Démontrer qu'elle est arithmétique. Préciser le premier terme et la raison.

14 Une suite arithmétique a pour premier terme 13 et pour centième terme 2011.

Calculer la moyenne des 100 premiers termes de cette suite.

- 15 On considère une suite $(u_n)_{n\in\mathbb{N}}$ arithmétique. Montrer que la suite (v_n) définie par $\forall n\in\mathbb{N},$ $v_n=2^{u_n}$ est géométrique, préciser le premier terme et la raison.
- $\boxed{\textbf{16}} \text{ On considère la suite } (u_n) \text{ définie par } u_0=3$ et $\forall n\in\mathbb{N},\, u_{n+1}=\frac{3u_n}{3+2u_n}.$
 - 1. À l'aide de la calculatrice, conjecturer les variations et la limite éventuelle de la suite (u_n) .
 - 2. Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n > 0$.
 - 3. On pose, pour tout $n \in \mathbb{N}$, $v_n = \frac{3}{u_n}$
 - (a) Démontrer que la suite (v_n) est arithmétique. Préciser son premier terme et sa raison.
 - (b) En déduire une expression de v_n en fonction de n pour tout $n \in \mathbb{N}$.
 - 4. En déduire une expression de u_n en fonction de n puis vérifier les conjectures émises dans la première question.

$$\boxed{\textbf{17}} \text{ Pour s'entraı̂ner} : u_{n+1} = \frac{3u_n}{1+2u_n} \text{ et } u_0 = \frac{1}{2}.$$

Montrer que la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{u_n}{u_n - 1}$ est géométrique.

Exprimer u_n en fonction de v_n , puis en déduire que pour tout $n \in \mathbb{N}$, $u_n = \frac{3^n}{3^n + 1}$.

18 Soit (u_n) la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 3u_n - 4n + 2$.

- 1. Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n \geqslant 2n$. En déduire la limite de la suite (u_n)
- 2. On pose pour tout $n \in \mathbb{N}$, $v_n = u_n 2n$
 - (a) Démontrer que (v_n) est géométrique. Préciser le premier terme et la raison.
 - (b) En déduire l'expression de v_n en fonction de n puis celle de u_n .

3. Soit
$$S_n = \sum_{k=0}^n u_k$$
.

Démontrer que pour tout $n \in \mathbb{N}, S_n = \frac{3^{n+1}-1}{2} + n(n+1).$

19

- 1. a est un nombre réel. On considère la suite (u_n) définie par pour tout $n\in\mathbb{N}^*$ par $\left\{ \begin{array}{ll} u_1=a\\ u_{n+1}=\frac{4}{10}-\frac{3}{10}u_n \end{array} \right..$
 - (a) (v_n) est la suite définie pour tout $n \in \mathbb{N}^*$ par $v_n = 13u_n 4$ Démontrer que (v_n) est géométrique et exprimer v_n en fonction de n et a.
 - (b) En déduire que pour tout $n \in \mathbb{N}^*$,

$$u_n = \frac{4}{13} + \left(a - \frac{4}{13}\right) \left(-\frac{3}{10}\right)^{n-1}$$

- (c) Déterminer la limite de la suite (u_n) .
- 2. Un professeur oublie souvent ses clés de salle. Pour tout entier $n \in \mathbb{N}^*$, on note E_n l'événement : « le professeur oublie ses clés le jour n » et $\overline{E_n}$ l'événement contraire.

 p_n est la probabilité de E_n . On note $p_1=a$, la probabilité qu'il oublie ses clés le premier jour. On suppose en outre que les deux conditions suivantes sont réalisées :

- si le jour n il a oublié ses clés, alors la probabilité qu'il les oublie le jour suivant est de $\frac{1}{10}$
- S'il ne les oublie pas le jour n, la probabilité qu'il les oublie le jour suivant est $\frac{4}{10}$.
- (a) Démontrer que $p_{n+1} = \frac{1}{10}p_n + \frac{4}{10}(1-p_n)$.

- (b) En déduire une expression de p_{n+1} en fonction de p_n .
- (c) À l'aide des résultats de la question 1., donner l'expression de p_n en fonction de n et de a.
- (d) La limite de (p_n) dépend-t-elle de la condition initiale a?
- 20 Deux exemples de suites récurrentes doubles, telles qu'on les trouvait dans des épreuves du bac dans les années 70 et 80.
 - 1. On considère la suite (u_n) définie par $u_0=1$ et $u_1=\frac{11}{2}$ et la relation

$$\forall n \in \mathbb{N}, \ u_{n+2} - u_{n+1} + \frac{1}{4}u_n = 0$$

- (a) Résoudre l'équation $x^2 x + \frac{1}{4} = 0$.
- (b) On considère la suite (v_n) définie pour tout $n\in\mathbb{N}$ par $v_n=u_{n+1}-\frac{1}{2}u_n$. Montrer que (u_n) est géométrique et donner son expression en fonction de n.
- (c) On considère la suite (w_n) définie pour tout $n \in \mathbb{N}$ par $w_n = 2^n \times u_n$. Montrer que (w_n) est arithmétique, donner son expression en fonction de n.
- (d) Déduire de ce qui précède l'expression de u_n en fonction de n.
- 2. On considère la suite (u_n) définie par $u_0=-2$ et $u_1=0$ et la relation

$$\forall n \in \mathbb{N}, u_{n+2} - 5u_{n+1} + 6u_n = 0$$

- (a) Résoudre l'équation $x^2 5x + 6 = 0$.
- (b) On considère la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = u_{n+1} 2u_n$. Montrer que (v_n) est géométrique et donner son expression en fonction de n.
- (c) On considère la suite (w_n) définie pour tout $n \in \mathbb{N}$ par $w_n = u_{n+1} 3u_n$. Montrer que (w_n) est géométrique, donner son expression en fonction de n.
- (d) Déduire de ce qui précède l'expression de u_n en fonction de n.
- 21 Soient a et b deux nombres réels non nuls. Le but de l'exercice est de déterminer l'expression en fonction de n de la suite réelle u vérifiant :

$$u_0$$
 et u_1 donnés, et $\forall n \in \mathbb{N}$, $u_{n+2} = au_{n+1} + bu_n$

1. Soit r un nombre réel, on définit la suite (v_n) par :

$$\forall n \in \mathbb{N}, \quad v_n = u_{n+1} - ru_n.$$

- (a) (a) Exprimer v_{n+1} en fonction de v_n et de u_n .
- (b) En déduire que si r est une solution de l'équation $x^2 ax b = 0$ alors la suite v est géométrique.
- 2. Dans cette question on suppose que l'équation $x^2 ax b = 0$ admet deux solutions réelles distinctes r_1 et r_2 .
 - (a) Exprimer $u_{n+1} r_1 u_n$ et $u_{n+1} r_2 u_n$ en fonction de u_0 , u_1 et de n.
 - (b) En déduire l'expression de u_n en fonction de de u_0 , u_1 et de n.
- 3. Dans cette question on suppose que l'équation $x^2 ax b = 0$ admet une seule solution double r_0 .
 - (a) Exprimer $u_{n+1} r_0 u_n$ en fonction de u_0 , u_1 et de n.
 - (b) Exprimer u_n en fonction de u_{n-1} puis en fonction de u_{n-2} , puis en fonction de u_{n-3} .
- 4. En déduire l'expression de u_n en fonction de l'entier naturel n.

Feuille de TD n°2 Réponses ou Solutions

		0	1	2	3	4
1	u_n	-4	-0,333	0, 4	0,714	0,889
	v_n	1	-0,333	-15	1,689	0,244

2
$$u_0 = 1$$
 et $u_{10} = 91$, $u_n + 1 = n^2 - n + 2$ et $u_{n+1} = n^2 + n + 1$

6
$$r=2, u_0=-3.$$

7

- 1. Pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 6$, $u_0 = 20$, donc (u_n) est arithmétique de raison 6 et de premier terme 20.
- 2. Pour tout $n \in \mathbb{N}$, $u_n = 20 + 6n$
- 3. $u_{84} = 20 + 6 \times 84 = 524$, soit 5,24 m au bout de 84 jours.

8

 \overline{def} arith(u0,r,n):

u=u0 for i in range(n): u=u+r return u

9

1.
$$u_1 = \frac{5}{3}$$
, $u_2 = \frac{3}{2}$, $u_3 = \frac{7}{5}$

2.
$$v_n = \frac{1}{u_n - 1}$$

(a) Pour montrer que (v_n) est arithmétique, on exprime v_{n+1} en fonction de v_n .

$$v_{n+1} = \frac{1}{u_{n+1} - 1}$$

$$= \frac{\frac{3u_n - 1}{u_n + 1} - 1}{\frac{2u_n - 2}{u_n + 1}}$$

$$= \frac{u_n + 1}{2u_n - 2}$$

Or,
$$v_n = \frac{1}{u_n - 1} \iff u_n - 1 = \frac{1}{v_n} \iff \boxed{u_n = \frac{1}{v_n} + 1 = \frac{v_n + 1}{v_n}}$$

Ainsi,
$$v_{n+1} = \frac{1}{2} \frac{\frac{v_n+1}{v_n}+1}{\frac{v_n+1}{2}-1} = \frac{1}{2} \frac{2v_n+1}{1} = v_n + \frac{1}{2}$$

Et donc (v_n) est arithmétique de raison $\frac{1}{2}$ et de premier terme $v_0 = \frac{1}{u_0 - 1} = 1$.

- (b) Ainsi pour tout $n \in \mathbb{N}$, $v_n = 1 + \frac{1}{2}n$
- (c) On a donc, pour tout $n \in \mathbb{N}$, $u_n = \frac{v_n + 1}{v_n} = \frac{2 + \frac{1}{2}n}{1 + \frac{1}{5}n} = \frac{4 + n}{2 + n}$.

3.
$$u_{100} = \frac{104}{102}$$

$$4. \lim_{n \to +\infty} u_n = 1.$$

12 Indications:

Soit $\overline{r_n}$ le nombre de noix de coco restantes après le n^e singe $(0 \le n \le N)$, en convenant que $r_0 = x$

- 1. Démontrer que $\left\{ \begin{array}{ll} r_0=x \\ r_n=\frac{r_{n-1}}{2}-n \end{array} \right. \qquad \text{pour } 1\leqslant n\leqslant N$
- 2. Étudier la suite (u_n) : $u_n = r_n + 2n 2$. (Chercher une relation de récurrence entre u_n et u_{n-1} .)
- 3. En déduire l'expression de r_n en fonction de n et de x.
- 4. En déduire que $x = 2^{N+1}(N-1) + 2$.

13

- 1. (a) $u_0 = -1$, $u_1 = 0$, $u_2 = 1$. La suite pourrait être arithmétique de raison 1 et de premier terme -1.
 - (b) $u_{n+1} u_n = n^3 n^3 3n^2 + 3n 1 = 3n^2 3n + 1$ non constant, donc (u_n) n'est pas arithmétique.
- 2. Pour tout $n \in \mathbb{N}$, $u_n = 6n + 2$ donc (u_n) est arithmétique de premier terme 2 et de raison 6.
- 14 On a $u_0=13$ et $u_{99}=2011$. La somme des 100 premiers termes, c'est $S_{99}=100\times\frac{u_0+u_{99}}{2}$, la moyenne c'est la somme divisée par 100, soit $\overline{m}=\frac{u_0+u_{99}}{2}=\frac{2024}{2}=1012$
- 15 Pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$ donc $v_n = 2^{u_0 + nr} = 2^{u_0} \times \left(2^r\right)^n$, donc (v_n) est géométrique de premier terme 2^{u_0} et de raison 2^r .

$$\boxed{16} \ v_{n+1} = \frac{3}{u_{n+1}} = \frac{3}{\frac{3u_n}{3+2u_n}} = \frac{3+2u_n}{u_n} = \frac{3}{u_n} + \frac{2u_n}{u_n} = v_n + 2$$

Pour tout $n \in \mathbb{N}$, $u_n = \frac{3}{1+2n}$, décroissante, tend vers 0.

$$\boxed{17} \ v_{n+1} = 3v_n, \ u_n = \frac{v_n}{v_n + 1}$$

18

- 1. hérédité : Soit $n \in \mathbb{N}$ tel que \mathcal{P}_n est vraie, donc $u_n \geqslant 2n$. Ainsi, $3u_n \geqslant 6n$ donc $u_{n+1} = 3u_n - 4n + 2 \geqslant 2n + 2 \geqslant 2(n+1)$. Donc \mathcal{P}_{n+1} est vraie.
- 2. (v_n) est géométrique de raison 3.
- 3. On utilise la linéarité de la somme.

20

- 1. (a) Solution : $\frac{1}{2}$
 - (b) (v_n) géométrique de raison $\frac{1}{2}$. $v_n=5\frac{1}{2^n}$
 - (c) (w_n) arithmétique de raison 10 : $w_n = 1 + 10n$
 - (d) $u_n = \frac{1+10n}{2^n}$.
- 2. (a) Solutions: 2 et 3.
 - (b) (v_n) géométrique de raison $3: v_n = 4 \times 3^n$
 - (c) (w_n) géométrique de raison $2: w_n = 6 \times 2^n$
 - (d) $u_n = v_n w_n = 4 \times 3^n 6 \times 2^n$