
Chapitre 6 : Fonctions usuelles
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1 Fonction exponentielle

1.1 Définition de « La fonction exponentielle »

La fonction exponentielle, notée exp est l’unique fonction dérivable sur R égale à sa dérivée et
telle que exp(0) = 1.

Définition 1 (Fonction exponentielle).

On doit admettre d’existence d’une telle fonction (une justification est sa constructibilité grâce à
la méthode d’Euler), mais on peut démontrer qu’elle est unique, en utilisant le fait que la fonction
exp ne s’annule pas sur R.

Remarque 1 (Unicité de la fonction).

exp ne s’annule pas sur R Unicité de la fonction
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https://youtu.be/jEO0m8Hy7M0
https://youtu.be/Sux9LEIr-PA


1 FONCTION EXPONENTIELLE Chap 6

• Relation fonctionnelle :∀x, y ∈ R, exp(x+ y) = exp(x)× exp(y)

• Positivité : ∀x ∈ R, exp(x) > 0.

• Monotonie : la fonction exp est strictement croissante sur R.

• Notation d’Euler : On pose exp(x) = ex, où e = exp(1) ≈ 2, 71828 . . ..

∀a, b ∈ R : ea+b = ea × eb ; e−a =
1

ea
; ea−b =

ea

eb
; ena = (ea)n , n ∈ Z

Théorème 1 (Propriétés de la fonction).

DÉMONSTRATION

Relation fonctionnelle : Soit y un réel quelconque. Posons, pour tout

x ∈ R, f(x) =
exp(x+ y)

exp(x)
(bien définie et dérivable sur R car pour tout

x ∈ R, exp(x) > 0)

Pour tout x ∈ R, f ′(x) =
exp(x)× 1 exp(x+ y)− exp(x) exp(x+ y)

exp(x)2
=

0. Ainsi, f est constante sur R et on a, pour tout x ∈ R, f(x) = f(0) =
exp(y).
Ainsi, exp(x+ y) = exp(x)× exp(y).

�

Il peut être défini comme la limite de la suite (un) telle que un =

(

1 +
1

n

)n

, c’est la définition

historique. Mais la convergence de la suite est très lente (il faut calculer plusieurs milliers de
termes de la suite pour obtenir quelques décimales exactes.

On a une valeur approchée plus rapidement en étudiant la suite (vn) définie par vn = 1 +
1

1!
+

1

2!
+

1

3!
+ . . .+

1

n! a
, qui converge également vers le nombre e.

a. la factorielle de n est le nombre défini ainsi : n! = 1× 2× 3× . . .× n.

Remarque 2 (valeur de e).

� Exemple 1:

• e2 × e = e2+1 = e3

• e−4 =
1

e4

• (ex)2 = e2x

• e3x+1

e1−x
= e3x+1−(1−x) = e4x
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• ∀a, b ∈ R, on a ea = eb ⇐⇒ a = b.

• ∀a, b ∈ R, on a ea > eb ⇐⇒ a > b.

Théorème 2 (Équations et inéquations).

◮ EXERCICE 1
Résoudre dans R :

e2x
2+3 = e7x e3x 6 ex+6

1.2 Limites

• lim
x→+∞

ex = . . . . . . • lim
x→−∞

ex = . . . . . .

Propriété 1 (Limites de la fonction exponentielle).

DÉMONSTRATION

1. Étudier les variations de la fonction f définie sur R+ par f(x) =
ex − (x+ 1).

2. En déduire que lim
x→+∞

ex = +∞

3. Quelle est la limite en −∞ : lim
x→−∞

ex ?

�

◮ EXERCICE 2 Modèle de Verhulst
Une population de bactéries se modélise au cours du temps par la fonction définie sur R+ par f(t) =

150

1 + 90e−0,6t
.

Déterminer la limite de f en +∞.

lim
x→0

ex − 1

x
= 1

On interprète cela par l’approximation affine de exp : quand x est proche de 0, ex ≈ 1 + x.

Propriété 2 (Limite et nombre dérivé).

DÉMONSTRATION

Nombre dérivé en 0

�

1.3 Représentation graphique

La fonction exponentielle croît très vite.
e1 ≈ 2, 72, e2 ≈ 7, 39 et e4 ≈ 54
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2 FONCTION LOGARITHME NÉPÉRIEN Chap 6

x

exp(x)

−∞ +∞

00

+∞+∞

0

1

1

e
1

2

3

4

5

−1

−2

1 2 3 4−1−2−3−4−5

Cexp

1.4 Théorème de croissances comparées

« L’exponentielle domine les fonctions puissance »

lim
x→+∞

exp(x)

x
= +∞ et par conséquent, lim

x→−∞

x exp(x) = 0

Théorème 3 (Croissances comparées).

DÉMONSTRATION

On étudie la fonction f définie sur [0 ; +∞[ par f(x) = ex − x2

2
.

�

Les formules précédentes restent vraies si on remplace
expx

x
par

expx

xn
et en 0 par xn exp(x).

Remarque 3.

◮ EXERCICE 3
Déterminer les limites en −∞ et +∞ de f définie sur R par f(x) = e−3x + 3x− 5.

2 Fonction logarithme népérien

2.1 Définition

d’après le corollaire du théorème des valeurs intermédiaires, pour tout nombre strictement positif, il
existe un unique antécédent réel par la fonction exponentielle : pour tout y ∈ ]0 ; +∞[, il existe un unique
x ∈ R tel que exp(x) = y.
On remarque d’ailleurs que y > 1 ⇐⇒ x > 0.

Par exemple, 2 > 0 admet un antécédent τ2 qui sera positif et tel que exp(τ2) = 2.

x

exp

−∞ +∞

00

+∞+∞

0

1

τ2

2

. . .

e
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Si y est un nombre strictement positif, on appelle logarithme népérien de y le nombre réel noté
ln(y) qui est l’antécédent de y par la fonction exponentielle :

ln : y ∈ R
∗

+ 7−→ ln(y) ∈ R tel que exp(ln(y)) = y

On dit que la fonction logarithme népérien est la fonction réciproque de la fonction exponentielle.

Définition 2 (Logarithme népérien).

∀a ∈ R,∀b > 0, ea = b ⇐⇒ a = ln(b)

1

2

3

4

5

6

−1

−2

1 2 3 4 5 6−1−2−3−4

Cexp

Cln

y
=
x

b
A (x ; y)

b

b

bA
′

b

b

x

y = exp(x)

y

x = ln(y)

Comme y = exp(x), alors x = ln(y), les courbes sont symétriques par rapport à l’axe d’équation y = x
(qui permet d’intervertir les rôles des axes des abscisses et des ordonnées).

On a les propriétés suivantes :

• Pour tout x ∈ R, ln(exp(x)) = x, ou ln (ex) = x

• Pour tout x ∈ ]0 ; +∞[ = R
∗

+, exp(ln(x)) = x, ou eln(x) = x

Propriété 3 (fonction réciproque de exp).

En particulier,
ln(1) = ln(e0) = 0 et ln(e) = ln(e1) = 1.

∀a, b ∈ ]0 ; +∞[

• Relation fonctionnelle :
ln(a× b) = ln(a) + ln(b)

• Conséquences :

1. ln

(

1

b

)

= − ln(b)

2. ln
(a

b

)

= ln(a)− ln(b)

3. Pour tout entier relatif n,
ln (an) = n ln(a)

4. ln
(√

a
)

=
1

2
ln(a) et plus générale-

ment, pour tout réel b, ln(ab) = b ln(a).

Théorème 4 (Propriétés de ln).
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On retiendra du dernier point que toute puissance s’exprime à l’aide de l’exponentielle de base e et du
logarithme népérien :

x
y
=

(

e
ln x

)y

= e
y ln(x)

� Exemple 2:

• ln(10) = ln(2) + ln(5)

• ln(100) = ln(10) + ln(10) = 2 ln(10)

• ln(1000) = . . . = 3 ln(10)

◮ EXERCICE 4 Prise d’initiatives

1. Comparer les nombres a = 22015 et b = 31271

2. Donner une valeur approchée du nombre A =
22015

5867

2.2 Dérivée et variations

Sur l’intervalle ]0 ; +∞[, la fonction ln est dérivable et sa dérivée est la fonction inverse : pour

tout x > 0, ln′(x) =
1

x

Propriété 4 (Dérivée de la fonction ln).

La fonction ln est par conséquent continue sur ]0 ; +∞[.

Remarque 4.

La fonction ln est strictement croissante sur ]0 ; +∞[

Conséquence 1.

• Pour tous a, b > 0, ln(a) = ln(b) ⇐⇒ a = b

• Pour tous a, b > 0, ln(a) < ln(b) ⇐⇒ a < b

Propriété 5 (Équations et inéquations).

◮ EXERCICE 5
Résoudre les inéquations suivantes après avoir trouvé leur ensemble de définition.
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1. ln(2x− 4) < 0

2. ln(3x) 6 1

3. ln(−x+ 1) > ln(x)

4. ln(3− 2x) < ln(x− 3)

2.3 Limites, Croissances comparées, équivalent

lim
x→0
x>0

ln(x) = −∞ et lim
x→+∞

ln(x) = +∞.

Propriété 6 (Limites).

• Forme
+∞
+∞ ,

lim
x→+∞

ln(x)

x
= 0

• Forme 0×−∞,
lim
x→0

x ln(x) = 0

Propriété 7 (Croissances comparées).

◮ EXERCICE 6
Soit f la fonction définie sur ]0 ; +∞[ par :

f(x) =
lnx

2x+ 1

1. Déterminer les limites aux bornes de l’ensemble de définition.

2. Interpréter graphiquement les résultats obtenus.

On a lim
x→0

ln(1 + x)

x
= 1

Propriété 8 (Une limite particulière).

DÉMONSTRATION

Le nombre dérivé de ln en 1 donne la limite attendue.

�

On dit que la fonction x 7→ ln(1 + x) est équivalente à x en 0.
Cela signifie que, pour un x « proche de 0, ln(1 + x) ≈ x ».
Par exemple, ln(1, 01) ≈ 0, 009950331 ≈ 0, 01

Remarque 5 (Équivalent).
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2.4 Étude des fonctions composées ln ◦u

Si u est une fonction définie sur un intervalle I, dérivable sur I et est strictement positive sur I,
alors la fonction f = ln ◦u est dérivable sur I et

∀x ∈ I f ′(x) =
u′(x)

u(x)

Propriété 9 (Dérivée de ln ◦u).

• u et ln(u) ont le même sens de variation sur I.

• (avec une fonction affine) f : x 7−→ ln(ax + b) est dérivable sur I = {x ∈ R | ax+ b > 0}
et pour tout x ∈ I, f ′(x) =

a

ax+ b
.

Conséquence 2.

Cette dernière remarque sera utilisée notamment pour la recherche de primitives de fractions ration-
nelles.

3 Fonctions trigonométriques

3.1 Fonction sinus

Soit x un nombre réel, sinx est l’ordonnée du point du cercle trigonométrique associé au nombre
x.

Définition 3 (Sinus d’un réel).

La fonction sinus est définie sur R, par

sin : x 7→ sinx

Elle est 2π−périodique, impaire, continue et dérivable sur R.
Sa dérivée est sin′ = cos .

Définition 4 (Fonction sinus).

x

sin(x)

0 π/2 π

00

11

00

Propriété 10 (Variations).
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Imparité et périodicité font le reste :

1

−1

1 2 3 4−1−2−3−4−5

Csin

3.2 Fonction cosinus

Soit x un nombre réel, cosx est l’abscisse du point du cercle trigonométrique associé au nombre
x.

Définition 5 (Cosinus d’un réel).

La fonction cosinus est définie sur R, par

cos : x 7→ cos x

Elle est 2π−périodique, paire, continue et dérivable sur R.
Sa dérivée est cos′ = − sin .

Définition 6 (Fonction sinus).

x

cos(x)

0 π/2 π

11

−1−1
0

Propriété 11 (Variations).

Parité et périodicité font le reste :

1

−1

1 2 3 4−1−2−3−4−5

Csin
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3.3 Fonction Tangente

Soit x un nombre réel différent de
π

2
modulo π, tan x =

sinx

cos x
.

Définition 7 (tangente d’un réel).

La fonction tangente est définie sur R\
{π

2
+ kπ | k ∈ Z

}

, par

cos : x 7→ cos x

Elle est π−périodique, impaire, continue et dérivable sur R\
{π

2
+ kπ | k ∈ Z

}

.

Sa dérivée est tan′ : x 7→ 1 + tan2 x =
1

cos2 x
.

Définition 8 (Fonction tangente).

La fonction tangente est strictement croissante sur
[

0 ;
π

2

[

x

tan(x)

0 π/2

00

+∞+∞

Propriété 12 (Variations sur
[

0 ;
π

2

[

).

Imparité et périodicité font le reste :

1

2

3

4

5

−1

−2

1 2 3 4 5 6 7−1−2−3−4
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