Feuille de TD nº4 Généralités sur les fonctions

Vocabulaire et notions générales

1 parité

Donner la parité des fonctions suivantes :

1.
$$f(x) = \frac{1}{1+x^2}$$

2.
$$g(x) = x \cos(x)$$

3.
$$h(x) = \frac{x}{\sin x}$$

4.
$$i(x) = x^3 - 4x$$

5.
$$j(x) = x^3 - 4x + 1$$

6.
$$k(x) = 2x^2 + 3x + 1$$

7.
$$\ell(x) = x^2 + \cos(x) - 4|x| + 1$$

8.
$$m(x) = \sin(x) \times \cos(x)$$

2 Donner un exemple de fonction qui n'est ni paire, ni impaire. Justifier la réponse en prouvant que la fonction proposée n'est bien ni l'un ni l'autre.

3 Périodicité :

- 1. Montrer que la fonction $f: x \mapsto \sin(x)\cos(x)$ est π -périodique
- 2. Montrer que la fonction $g: x \mapsto \cos\left(5x + \frac{\pi}{4}\right)$ est $\frac{2\pi}{5}$ – périodique
- 3. Donner une période de $h: t \mapsto \sqrt{2}\sin(\omega t + \phi)$. Justifier.

4 Variations:

- 1. Montrer que la fonction f définie par $f(x) = \frac{1}{x}$ est décroissante sur]0; $+\infty[$ et sur $]-\infty$; 0[
- 2. Montrer que la fonction g définie par $g(x) = \sqrt{x}$ est croissante sur $[0; +\infty[$.

5 Composition :

$$h: \mathbb{R}^* \longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{1}{x}$$

Donner les ensembles de définition et les expressions des images des fonctions suivantes :

$$f \circ g$$
 $g \circ f$ $f \circ h$ $h \circ f$

- 6 Soient $\mathbb{R} \xrightarrow{f} \mathbb{R}$ et $\mathbb{R} \xrightarrow{g} \mathbb{R}$ deux fonctions. Montrer que si f est T-périodique, alors $g \circ f$ est aussi T-périodique.
- 7 Soit f une fonction croissante sur \mathbb{R} . Montrer que :e
 - 1. Si q est croissante sur un intervalle I, alors $f \circ q$ est croissante sur I.
 - 2. Si g est décroissante sur un intervalle I, alors $f \circ g$ est décroissante sur I.

Limites de fonctions

8 Calculer les limites suivantes.

$$1. \lim_{x \to +\infty} 5 - 2x$$

2.
$$\lim_{x \to -\infty} 2x^3 + x + 1$$

2.
$$\lim_{x \to -\infty} 2x^3 + x + 1$$

3. $\lim_{x \to -\infty} (x^2 + 1)(3 - 4x)$
5. $\lim_{x \to -\infty} -x + \frac{3}{2x^2}$
6. $\lim_{x \to +\infty} -x + \frac{3}{2x^2}$

4.
$$\lim_{x \to +\infty} (x^2 + 1)(3 - 4x)$$

5.
$$\lim_{x \to -\infty} -x + \frac{3}{2x}$$

6.
$$\lim_{x \to +\infty} -x + \frac{3}{2x^2}$$

9 Calculer les limites suivantes en soignant les rédactions de levée des formes indéterminées lorsqu'il y en a.

1.
$$\lim_{x \to +\infty} x^2 + x - 1$$

1.
$$\lim_{x \to +\infty} x^2 + x - 1$$

2. $\lim_{x \to -\infty} x^2 + x - 1$
3. $\lim_{x \to +\infty} \frac{x - 4}{x^2 + 1}$

3.
$$\lim_{x \to +\infty} \frac{x-4}{x^2+1}$$

$$4. \lim_{x \to -\infty} \frac{-2}{x+1}$$

5.
$$\lim_{x \to +\infty} x^3 - 3x^2 + 2$$

$$6. \lim_{x \to +\infty} \frac{x-1}{x+1}$$

7.
$$\lim_{x \to -\infty} \frac{-3x - 1}{6 - x}$$

8.
$$\lim_{x \to +\infty} x - \sqrt{x}$$

Fonctions de référence

10 Équations :

Résoudre les équations suivantes :

1.
$$\sqrt{x^2 - 12} = 2x - 6$$

2.
$$\sqrt{4-x} = x-2$$

3.
$$\sqrt{x^2+1}=3x+1$$

4.
$$|5x - 2| = 3$$

5.
$$|3x - 4| = |5 - 2x|$$

- $oxed{11}$ On considère la fonction définie sur ${\mathbb R}$ par f(x) = |x - 4| + |x + 6|
 - 1. Écrire |x-4| et |x+6| sans valeur absolue suivant les valeurs de x.
 - 2. Écrire f(x) sans valeur absolue. On pourra utiliser un tableau
 - 3. Représenter graphiquement la fonction f dans un
- 12 Tracé des représentations graphiques des fonctions $f \colon x \mapsto |2x-1| + |x+3|$ et $g \colon x \mapsto |2x-1|$ 1| + 2|x + 3|

4 Dérivation

13 Calculer les dérivées des fonctions suivantes après avoir déterminé leurs ensembles de définition et de dérivabilité.

1.
$$f_1(x) = (x^2 + 5)^3$$

2.
$$f_2(x) = \frac{1}{(x^2 + 5)^3}$$

3.
$$f_3(x) = \sqrt{\frac{1}{x^2 + 3}}$$

4.
$$f_4(x) = \left(\frac{3-x}{3+x}\right)^2$$

5.
$$f_5(x) = 3x^4 - 5x^2 + 2x - 4$$

6.
$$f_6(x) = x^2 + \sqrt{x} + 2$$

7.
$$f_7(x) = 2x^2 - 3 + \frac{2}{x}$$

8.
$$f_8(x) = \frac{x-4}{3-2x}$$

9.
$$f_9(x) = \frac{1}{x} (3 + \sqrt{x})$$

10.
$$f_{10}(x) = (3x - 1)^{20}$$

11.
$$f_{11}(x) = (3x^2 - 5x + 1)^5$$

12.
$$f_{12}(x) = \sqrt{2x+6}$$

13.
$$f_{13}(x) = \sqrt{\frac{1}{x} - 1}$$

14.
$$f_{14}(x) = \sqrt{x + \sqrt{1 + x^2}}$$

14 Déterminer les variations sur $\mathbb R$ de la fonction f définie par $f(x)=x^3-4x^2+5x+1$

Soit la fonction f définie sur $\mathbb{R}\setminus\{-2\}$ par $f(x)=\frac{x^2+3x+3}{x+2}.$

- 1. Déterminer l'expression de f'(x) pour tout réel $x \neq -2$.
- 2. Dresser le tableau de signes de f'(x). En déduire les variations de la fonction f.
- 3. Calculer f(x) (x+1) pour tout $x \neq 2$. En déduire $\lim_{x \to +\infty} f(x) (x+1)$.

Que peut-on en déduire sur la courbe de f quand x tend vers $+\infty$?

16 Un problème simple d'optimisation.

Une entreprise fabrique des chaises en bois, au maximum 10 milliers par mois. Le coût de fabrication, en milliers d'euros, de x milliers de chaises est estimé par : $C(x) = 5x^2 + 10x + 100$. Chaque chaise est vendue $70 \in$.

- 1. Vérifier que le « bénéfice algébrique », en milliers d'euros, réalisé par la fabrication et la vente de x milliers de chaises est donné par : $B(x) = -5x^2 + 60x 100$.
- 2. Déterminer l'intervalle sur lequel le bénéfice est positif.
- 3. Étudier les variations de la fonction B sur [0; 10].

4. En déduire la quantité de chaises à fabriquer et vendre pour réaliser un bénéfice maximum. Précisez la valeur de ce bénéfice.

- 1. Prouver que la fonction f est impaire.
- 2. Justifier que la fonction f est définie et dérivable sur l'intervalle $[-7\,;\,7]$
- 3. Étudier les variations de la fonction f sur l'intervalle $[-7\,;\,7]$.
- 4. En déduire que pour tout réel x de [-7,7], $-\frac{1}{2} \le f(x) \le \frac{1}{2}$.

18 Obtention d'inégalité Démontrer que, pour tout réel $x\geqslant 0$, on a $x^3\geqslant 3x-2$

19 Positions relatives de courbes Soit f la fonction définie par $f(x)=x^3-2x$ sur l'intervalle $[0\,;\,+\infty[$.

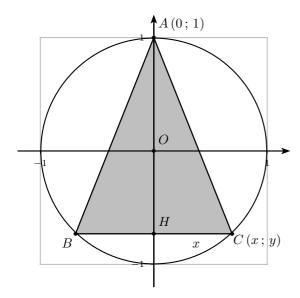
- 1. Calculer f'(x).
- 2. Déterminer l'équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f , représentative de f, au point A d'abscisse 1.
- 3. Soit g la fonction définie sur $[0\,;\,+\infty[$ par g(x)=x-2.
 - (a) Étudier le signe de h définie par h(x) = f(x) g(x).
 - (b) Que peut-on en déduire concernant la position relative de \mathcal{T} par rapport à \mathscr{C}_f ?

20 Dans cet exercice, on va déterminer quel est le triangle isocèle inscrit dans un cercle de rayon 1 qui a une aire maximale. On se place donc dans le cercle « trigonométrique », centré en O et de rayon 1.

On considère un triangle ABC, isocèle en A, inscrit dans un cercle de rayon 1. H est le pied de la hauteur issue du sommet principal. A est fixe et le point C est mobile sur le cercle, on appelle x l'abscisse de C, et y son ordonnée.

On a
$$x \in [0; 1]$$
.

Les coordonnées des points sont : $A\left(0\,;\,1\right)$, $B\left(-x\,;\,y\right)$ et $C\left(x\,;\,y\right)$.



- 1. Justifier que $C\left(x\,;\,y\right)$ appartient au cercle si et seulement si $x^2+y^2=1.$
- 2. Justifier que AH=1-y. En déduire que l'aire du triangle isocèle ABC est $x\left(1+\sqrt{1-x^2}\right)$.
- 3. On pose, pour tout $x \in [0; 1]$, $f(x) = x\left(1+\sqrt{1-x^2}\right)$.
 - (a) Démontrer que pour tout $x \in [0; 1[, f'(x) = \frac{\sqrt{1-x^2}+1-2x^2}{\sqrt{1-x^2}}]$.
 - (b) Résoudre l'équation $\sqrt{1-x^2}=2x^2-1$. En déduire le signe de f'(x) puis les variations de f.
- 4. Quelle est la nature du triangle isocèle d'aire maximale inscrit dans le cercle unité ?

5 Continuité et TVI

21 On considère la fonction f définie sur $\mathbb R$ par $f(x)=x^4+4x+1.$

Montrer que l'équation f(x)=0 admet exactement deux solutions sur $\mathbb R$ et donner un encadrement d'amplitude 10^{-2} de ces deux solutions.

22 Soit f la fonction définie sur $\mathbb R$ par $f(x)=-x^4+2x^3+3x+1.$

- 1. Calculer f'(x).
- 2. (a) Étudier les variations de f'.
 - (b) Justifier que l'équation f'(x)=0 admet une unique solution α sur \mathbb{R} .
 - (c) En déduire le tableau de signes de f'
- 3. Étudier les variations de f sur \mathbb{R} .

23 Avec une fonction auxiliaire

1. On considère la fonction q définie sur \mathbb{R} par :

$$g(x) = x^3 - 3x - 3$$

(a) Étudier les variations de g et dresser son tableau de variation.

- (b) Calculer g(3)
- (c) Démontrer que l'équation g(x)=0 admet une unique solution α sur \mathbb{R} .
- (d) Déterminer, à l'aide de la calculatrice, un encadrement d'amplitude 10^{-3} de α .
- (e) Établir le tableau de signes de g.
- 2. f est la focntion définie sur $\mathbb{R}\setminus\{-1\,;\,1\}$ par $f(x)=\frac{2x^3+3}{x^2-1}$
 - (a) D2montrer que pour tout $\mathbb{R}\setminus\{-1;1\}$: $f'(x)=\frac{2xg(x)}{(x^2-1)^2}.$
 - (b) Dresser le tableau de varations de f
 - (c) Montrer que $f(\alpha) = \frac{3(2\alpha+3)}{\alpha^2-1}$

On considère la fonction f définie sur $\mathbb R$ par $f(x)=rac{x^3-4}{x^2+1}$, et on note $\mathscr C$ sa courbe représentative dans un repère orthonormal

1. Étude d'une fonction auxiliaire /4,5

On pose $g(x) = x^3 + 3x + 8$

- (a) Montrer que g est dérivable sur \mathbb{R} .
- (b) Déterminer les variations de g sur \mathbb{R} .
- (c) Déterminer les limites de g en $-\infty$ et en $+\infty$.
- (d) Montrer que l'équation g(x)=0 admet sur $\mathbb R$ une unique solution α dont on donnera un encadrement à 10^{-2} .
- (e) Préciser le signe de g(x) selon les valeurs de x.

2. **Étude de** f /4,5

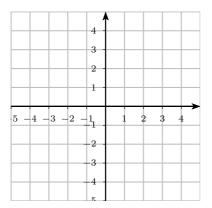
- (a) Préciser l'ensemble de dérivabilité de f.
- (b) Calculer f'(x) et montrer que pour tout $x \in \mathbb{R}$, $f'(x) = \frac{xg(x)}{\left(x^2+1\right)^2}$
- (c) Déterminer les variations de f sur \mathbb{R} .
- (d) Étudier les limites de f en $+\infty$ et $-\infty$ et dresser le tableau de variations de f.
- (e) Montrer que $f(\alpha)=\frac{3}{2}\alpha$ et en déduire un encadrement de $f(\alpha)$

3. Étude du comportement en l'infini /2,5

- (a) Déterminer quatre réels a, b,c et d tels que $f(x) = ax + b + \frac{cx + d}{x^2 + 1}.$
- (b) Calculer $\lim_{x\to +\infty} f(x) x$ et $\lim_{x\to -\infty} f(x) x$. Quelle interprétation graphique peut-on faire de ces résultats ?

4. **Tracé** /1,5

Dans le repère ci-dessous, on fera apparaître une allure du graphe $\mathscr C$ de la fonction f. On mettra en évidence les tangentes horizontale, les asymptotes éventuelles. En particulier, indiquer le coefficient directeur de la tangente au point d'abcisse 1.



Feuille de TD nº4 Réponses ou Solutions

1 Vocabulaire et notions générales

- $\boxed{\mathbf{1}}$ On calcule f(-x) et on avise.
- 1. paire
- 2. impaire
- 3. paire
- 4. impaire
- 5. ni l'un ni l'autre
- 6. ni l'un ni l'autre
- 7. paire
- 8. impaire

Une somme de fonctions paires est paire, une somme d'impaires est impaire, un produit d'impair/pair est impair, produit de paires est paire, produit de deux impaires est impaire.

- 3 Calculer f(x+T), où T est la période. La fonction h est $\frac{2\pi}{\omega}$ –périodique. ω s'appelle la pulsation en physique et s'exprime en rad/s .
 - $\boxed{\mathbf{4}}$ Pour a < b dans les intervalles désignés.
 - 1. $\frac{1}{a} \frac{1}{b} = \frac{b-a}{ab}$ puis étude de signe
 - 2. $\sqrt{a} \sqrt{b} = \frac{a-b}{\sqrt{a} + \sqrt{b}}$ puis étude de signe

5

- $f \circ g(x) = 1 x$ définie sur $[0; +\infty[$ (attention)
- $g \circ f(x) = \sqrt{1 x^2}$ définie sur [-1; 1]
- $f \circ h(x) = 1 \frac{1}{x^2}$ définie sur \mathbb{R}^* .
- $\bullet \ \ h\circ f(x)=\frac{1}{1-x^2} \text{ d\'efinie sur } \mathbb{R}\backslash\{-1\,;\,1\}.$
- $\boxed{\mathbf{6}} \ g \circ f(x+T) = g \circ f(x)$ par périodicité de f.
- 7 Soient a < b deux réels dans l'intervalle I.
- 1. g(a) < g(b) car g est croissante sur I donc f(g(a)) < f(g(b)) comme f est croissante sur \mathbb{R} .
- 2. comme le précédent, première inégalité inversée.

2 Limites de fonctions

8

1. $-\infty$

3. $+\infty$

 $5. + \infty$

2. −∞

 $4. -\infty$

6. −c

9

1. $+\infty$

2. F.I. du type
$$+\infty - \infty$$
. On a $x^2 + x - 1 = x^2 \left(1 + \frac{1}{x} - \frac{1}{x^2}\right)$ avec $\lim_{x \to -\infty} x^2 = +\infty$ et $\lim_{x \to -\infty} 1 + \frac{1}{x} - \frac{1}{x^2} = 1$ donc par produit de limites, on obtient $\lim_{x \to -\infty} x^2 + x - 1 = +\infty$.

3. F.I. du type
$$\frac{\infty}{\infty}$$
. On a $\frac{x-4}{x^2+1}=\frac{x\left(1-\frac{4}{x}\right)}{x^2\left(1+\frac{1}{x^2}\right)}$ avec $\lim_{x\to+\infty}\frac{x}{x^2}=\lim_{x\to+\infty}\frac{1}{x}=0$ et $\lim_{x\to+\infty}\frac{1-\frac{4}{x}}{1+\frac{1}{x^2}}=1$ Ainsi, par produit de limites, $\lim_{x\to+\infty}\frac{x-4}{x^2+1}=0$.

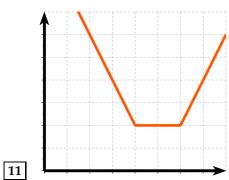
4. F.I. du type
$$+\infty-\infty$$
. On lève l'indétermination par factorisation. $\lim_{x\to+\infty}x^3-3x^2+2=+\infty$

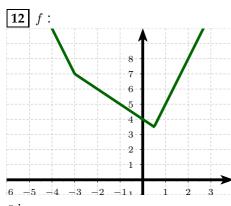
5. Même rédaction et méthode que le 2)
$$\lim_{x\to +\infty} \frac{x-1}{x+1} = 1$$

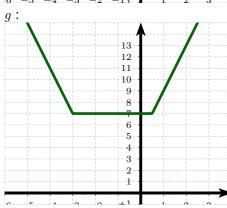
6. Même rédaction et méthode que le 2)
$$\lim_{x \to -\infty} \frac{-3x-1}{6-x} = 3$$

7. F.I. du type
$$+\infty-\infty$$
.
$$x-\sqrt{x}=x\left(1-\frac{1}{\sqrt{x}}\right)\operatorname{donc}\lim_{x\to+\infty}x-\sqrt{x}=+\infty.$$

3 Fonctions de référence







4 Dérivation

13

1.
$$f_1(x) = 6x(x^2 + 5)^2$$

2.
$$f_2(x) = \frac{-6x}{(x^2+5)^4}$$

3.
$$f_3(x) = \frac{-x}{(x^2+3)\sqrt{x^2+3}}$$

4.
$$f_4(x) = -\frac{12(3-x)}{(x+3)^3}$$

5.
$$f_5'(x) = 12x^3 - 10x + 2 \operatorname{sur} \mathbb{R}$$

6.
$$f_6'(x) = 2x + \frac{1}{2\sqrt{x}}$$
 déf sur \mathbb{R}_+ , dérivable sur \mathbb{R}_+^*

7.
$$f_7'(x) = 4x - \frac{2}{x^2}$$
 déf et dér sur \mathbb{R}^* .

8.
$$f_8'(x)=\frac{11}{(3-2x)^2}$$
 déf et dér sur $\left]-\infty\,;\,\frac{3}{2}\right[\cup\left]\frac{3}{2}\,;\,+\infty\right[$

9.
$$f_9'(x) = \frac{1}{x} \times \frac{1}{2\sqrt{x}} - \frac{3+\sqrt{x}}{x^2} = \frac{-\sqrt{x}-6}{2x^2}$$
 déf et dér sur $]0\,;\,+\infty[$.

10.
$$f'_{10}(x) = 20 \times 3 \times (3x-1)^{19}$$
. def et dér sur \mathbb{R}

11.
$$f'_{11}(x) = 5(6x - 5)(3x^2 - 5x + 1)^4$$

$$12. \ \ f_{12}'(x) = \frac{2}{2\sqrt{2x+6}} = \frac{1}{\sqrt{2x+6}} \ \text{def sur} \ [-3\,;\, +\infty[\text{, der sur}\,] - 3\,;\, +\infty[\text{, def sur}\,] - 3\,; \ +\infty[\text{, def sur}\,] -$$

13.
$$f_{13}'(x) = \frac{-\frac{1}{x^2}}{2\sqrt{\frac{1}{x}-1}}$$
 déf sur $]0\,;\,1]$, et dérivable sur $]0\,;\,1[$.

14.
$$f_{14}'(x)=\frac{1+\frac{2x}{2\sqrt{1+x^2}}}{2\sqrt{x+\sqrt{1+x^2}}}$$
 déf et dérivable sur $\mathbb R$ (il y a un peu de boulot pour prouver que $x+\sqrt{1+x^2}>0$ sur $\mathbb R$).

5 Continuité et TVI

21
$$f'(x) = 4(x^3 + 1), f'(x) \leqslant \iff x \leqslant -1$$

x	$-\infty$		-1		$+\infty$
f'(x)		_	0	+	
f(x)	+∞ 	<u></u>	-2		$+\infty$

$$\alpha \in]-1.5; -1.49[$$
 et $\beta \in]-0.26; -0.25[$.

22

1.
$$f'(x) = -4x^3 + 6x^2 + 3$$

- 2. (a) On calcule $f''(x) = -12x^2 + 12x = -12x(x-1)$ d'où le signe positif de f'' sur [0; 1] et donc la croissance de f' sur [0; 1].
 - (b) f'(1) = 5 et f'(2) = -5 + TVI monotonie, il existe un unique α sur $\mathbb R$ tel que $f'(\alpha) = 0$.
- 3. f croissante sur $]-\infty$; α].

23

1.
$$g'(x) = 3(x^2 - 1)$$
 et $\alpha \in]2, 103; 2, 014[, g(x) \ge 0 \text{ sur } [\alpha; +\infty[.$

x	$-\infty$		-1		0		1		α		$+\infty$
2x			_		0			+			
g(x)						_			0	+	
$\left(x^2-1\right)^2$		+	0		_		0		+		
f'(x)		+		+	0	_		_	0	+	