POUR LE 1/10/2025 DM — SUITES CPES

► EXERCICE 1 Commun

Soit (u_n) la suite définie par $u_0 = 12$ et pour tout entier n, $u_{n+1} = \frac{2u_n + 5}{3}$.

- 1. Calculer u_1, u_2 et u_3 . Fournir le résultat sous forme fractionnaire.
- 2. Démontrer que la suite (u_n) n'est ni arithmétique , ni géométrique.
- 3. On définit la suite (v_n) pour tout entier naturel n par $v_n = u_n 5$.
 - (a) Calculer v_0, v_1, v_2 et v_3 sous forme fractionnaire.
 - (b) Calculer v_{n+1} en fonction de u_n .
 - (c) En déduire que (v_n) est une suite géométrique dont on indiquera la raison.
 - (d) Exprimer v_n puis u_n en fonction de n.
- 4. On considère un repère orthonormé d'unité graphique 1 cm.
 - (a) Tracer les droites d'équation y = x et $y = \frac{2x+5}{3}$.
 - (b) Placer sur l'axes des abscisses, à l'aide de ces droites, u_0, u_1, u_2 et u_3 .
 - (c) Conjecturer la limite de la suite (u_n) .

► EXERCICE 2 Suite homographique

 (u_n) est la suite définie par $u_0=2$ et la relation de récurrence $u_{n+1}=\frac{2u_n+3}{u_n+4}$ pour tout entier naturel n

On définit la suite (v_n) par $v_n = \frac{u_n - 1}{u_n + 3}$ pour tout entier naturel n.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer que (v_n) est une suite géométrique dont on précisera le premier terme et la raison.
- 3. Exprimer v_n en fonction de n.
- 4. Retrouver l'expression de u_n en fonction de v_n puis en fonction de n.

► EXERCICE 3 ouvert

Faire l'étude de la suite définie par $u_0=0$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=0,6u_n+2$

► EXERCICE 4

Cherchant à anticiper la diminution de son capital disponible, madame DURAND décide d'ajouter à son capital disponible 300 € chaque 1er décembre.

On note v_n la valeur du capital le 1^{er} janvier de l'année 2018 + n. On a ainsi $v_0 = 16\,000$.

- 1. Justifier que, pour tout entier naturel n , on a $v_{n+1} = 0.85 \times v_n + 300$.
- 2. On considère la suite (w_n) définie pour tout entier naturel n par $w_n=v_n-2\,000$.
 - (a) Calculer w_0 .
 - (b) Montrer que la suite (w_n) est géométrique de raison 0,85.
 - (c) En déduire que, pour tout entier n, $v_n = 2\,000 + 14\,000 \times 0,85^n$.
- 3. En s'y prenant ainsi, madame DURAND espère toujours disposer d'un capital supérieur à 2 500 €. A-t-elle raison?